
Abstract

This paper describes an IP-layer anonymizing infrastruc-
ture, called ANON, which allows server addresses to be
hidden from clients and vice versa. In providing address
anonymity, ANON uses a network resident set of IP-layer
anonymizing forwarders that can forward IP packets with
nested encryption and decryption applied to their source
and destination addresses. To prevent adversaries from
compromising the anonymity by learning the forwarding
path, ANON incorporates a suite of countermeasures,
including non-malleable, semantically secure link encryp-
tion and link padding. To lower the bandwidth cost of pad-
ding traffic, two novel algorithms are suggested: on-
demand link padding and probabilistic link padding. To
prevent inband denial of service (DoS) attacks through the
anonymizing infrastructure itself, ANON uses rate limiting.
Finally, ANON makes use of fault-tolerant transport net-
works to enhance its resilience against failures and out-
band attacks.

1. Introduction
Over the current Internet, when a client acquires

services from an application server, called a target server
subsequently, packets sent and received by the client reveal
the server’s IP address in the packet headers. There are a
number of situations where it would be useful for applica-
tions to be able to communicate with each other without
revealing the IP address of the destination to the source, the
IP address of the source to the destination, or both. The IP
address of a destination may also want to be hidden from
the public, beyond just clients. For example, a web site
may want to hide its IP addresses to reduce the risk of
denial of service (DoS) attacks aimed at these addresses, or
an organization may want to ensure its anonymity by not
revealing its IP addresses. See [13] for discussion on
supporting anonymity at the IP layer. 

One way to achieve this anonymity, as described in this
paper, is to use an overlay network connecting a network
resident set of IP-layer servers that can forward IP packets,
with nested encryption and decryption applied to their

source and destination addresses. We will call these
network resident IP-layer servers anonymizing forwarders,
or simply forwarders, and an IP anonymizing infrastruc-
ture based on these anonymizing forwarders an forwarding
infrastructure, or simply ANON. 

Using ANON, a client can send and receive packets to
and from target servers by using server handles rather than
server IP addresses, where a server handle, or simply a
handle, is an information string from which a sequence of
forwarders in the ANON infrastructure can translate into
the IP address of the target server. This is analogous to an
organization sending and receiving U.S. mail using its P.O.
Box number rather than street address, where the P.O. Box
number is the handle to the organization, and postal offices
correspond to ANON forwarders. 

In addition to performing address encryption and
decryption, ANON employs a set of countermeasures to
protect against adversaries from learning forwarding paths
that could lead to the discovery of addresses that the infra-
structure intends to hide. This includes protocol camou-
flaging, link encryption, link padding, and use of fault-
tolerant overlay networks to forward packets, such as
Chord [16], that can guard against path discovery using
congestion-based attacks or DoS attacks. To defend against
possible “inband” DoS attacks by adversaries on
forwarders or target servers through the ANON infrastruc-
ture itself, ANON uses per-source and per-destination rate
limiting rate limiting. Finally, to defend against “outband”
DoS attacks by adversaries through networking paths
external to the ANON infrastructure, ANON uses redun-
dant forwarders, forwarders with anycast addresses [8,12],
or a fault-tolerant overlay network mentioned above.

For link padding, ANON offers new ways of lowering
its bandwidth cost. Note that link padding may degrade
network’s ability in serving normal traffic. Since padding
traffic is supposed to be indistinguishable to routers, it
would be inappropriate to assume that routers can give
normal traffic preferential treatments to padding traffic.
Consider those overplay links which pass through one or
more intermediate routers. Padding traffic on such links
will increase the load on these intermediate routers and
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their adjacent links and thus decrease their bandwidth
available in serving normal traffic. To reduce the band-
width cost of link padding, we have developed two new
approaches in ANON. The first is on-demand link padding
which generates padding traffic only in the presence of real
traffic and only at the rate just above that of real traffic.
The second is probabilistic link padding which generates
padding traffic probabilistically so that the total traffic load
satisfies a heavy-tail probability distribution, rather than
the usual uniform distribution. This allows increased bursts
of real traffic without increasing padding.

The design of ANON assumes that it will be used
mainly for low- to medium-bandwidth signaling and data
applications, not data transfer that may require high band-
width. As will be explained later in the paper, this assump-
tion makes our countermeasures such as rate limiting
effective. There are many applications that fit the model
defined here, including signaling protocols such as connec-
tion setup and termination, user authentication and authori-
zation, service discovery and registration, and instant
messaging.

Consider, for example, the use of ANON to protect
authentication servers against DoS attacks. By definition,
an authentication server needs to process requests from
unknown users. An adversary can exploit this fact to mount
DoS attacks on the authentication server by sending it a
large number of fake authentication requests. The risk of
such DoS attacks can be significant for sophisticated
authentication that uses substantial resources. ANON
provides a solution to this problem by hiding the IP address
of the authentication server from the public and thus from
adversaries.

We have implemented a laboratory testbed for ANON at
Harvard. The testbed currently incorporates a number of
countermeasures mentioned above, including protocol
camouflaging, link encryption, on-demand link padding,
and rate limiting. For ease of use, the testbed also includes
NAT gateways that allow existing client and server appli-
cations to use ANON directly.

The rest of this paper is organized as follows. We first
describe our threat model in Section 2. We state our design
objectives in Section 3 and give an overview and a few
usage examples of the ANON infrastructure in Section 4.
We then describe in Section 5 ANON’s countermeasures in
defense against threats in our threat model. In Section 6,
we turn our focus to the new link padding schemes,
namely, on-demand link padding and probabilistic link
padding. In Section 7, we sketch an approach of using a
fault-tolerant transport network to enhance ANON’s
defense against outband DoS attacks. We briefly describe
our laboratory testbed implementation in Section 8. We

compare ANON with previous approaches in related areas
in Section 9 and conclude this paper in Section 10.

To be complete, we include in this paper some material
which appeared previously in an overview paper [11].

2. Threat Model
The ANON forwarding infrastructure provides counter-

measures to the following three types of threats: 
• Type 1 threat (unauthorized address discovery). The

forwarding infrastructure may leak address informa-
tion that it is supposed to hide.

• Type 2 threat (inband DoS attacks). The forwarding
infrastructure may be used as a conduit to launch DoS
attacks on forwarders or target servers.

• Type 3 threat (outband DoS attacks). Forwarders and
the underlying transport network in the infrastructure
may themselves be subject to DoS attacks through
external network paths.

We assume throughout this paper that forwarders are
managed by trusted third parties and that they cannot be
compromised. In addition, we assume that the location and
addresses of forwarders are not publicized. This means that
adversaries will not know the addresses of forwarders
beyond the first hop, without tracing the forwarding infra-
structure.

However, after having located a forwarder, we assume
that adversaries can monitor traffic and observe the content
of packets on links in and out of the forwarder. We feel that
this strong adversary model is justified in view of the fact
that it is possible to monitor a particular set of links even
without physical wiretapping. For example, by tricking
routers to think that there is a shorter path to or from a
forwarder, an adversary will be able to direct the
forwarder’s traffic to his own networks for monitoring and
logging purposes. 

An example attack related to type 1 threat works as
follows. Acting as a legitimate client, an adversary sends
probe packets to a target server whose address he intends to
discover. By specially marking his packets or transmitting
them according to certain timing patterns, referred to as
packet tagging or traffic tagging [14], respectively, and by
using link monitoring, the adversary attempts to identify
these packets on links of the forwarding infrastructure and
trace through these links to discover the address of the
target server. ANON uses techniques such as link encryp-
tion and link padding to defend against these attacks. 

In addition, type 1 threat includes congestion-based
attacks such as Wei Dai’ attack [4] and DoS attacks, in
which an adversary attempts to determine whether or not a
given link or a node is on the forwarding path by



congesting the link or attacking the node, while sending
probe requests to the target server. If the attack does not
affect the return of replies from the server, the adversary
concludes that the link or the node is not on the forwarding
path; otherwise, it is. As described in Section 7, ANON
uses fault-tolerant transport networks to defend against
these types of attacks. 

In type 2 threat, an adversary, again acting as a legiti-
mate client, sends a large number of packets to a target
server with the intention of swamping the server or
forwarders on the forwarding path. Because the attack uses
the infrastructure itself, we call it an inband DoS attack.
ANON uses per-source and per-destination rate limiting to
curtail these attacks by having upstream forwarders drop
excessive traffic.

In type 3 threat, an adversary, after having discovered
the address of a forwarder, sends DoS attack packets to the
address, or paths to it, using network paths external to the
forwarding infrastructure. Since the attack does not use the
forwarding infrastructure, we call it an outband DoS
attack. To address type 3 threat, ANON forwarders need to
be resilient to DoS attacks, which can be achieved through
the use of redundant forwarders, forwarders with anycast-
style addresses, or the use of a fault-tolerant transport
network such as Chord.

Our assumption that forwarders can not be compro-
mised simplifies our threat model. For example, this
assumption has allowed us not to be concerned with attacks
originating from compromised forwarders and other
forwarder-facilitated attacks. We are looking into a revised
threat model where some of the forwarders might have
been compromised.

3. ANON Design Objectives
There are two main objectives for the design of the

ANON forwarding infrastructure:
• Stateless, real-time forwarding of IP packets with

nested encryption and decryption applied to their
source and destination addresses. The forwarding
infrastructure should be able to support real-time traf-
fic with small delays in each hop. Furthermore, for
ease of management, forwarders should be stateless in
packet forwarding. In particular, forwarders should not
keep any connection or session state or any NAT-like
mapping tables, and should be oblivious to the number
of connections or sessions. However, a forwarder may
keep statistics on traffic to specific destinations and
from specific sources so that per-source or per-destina-
tion rate limiting can be implemented.

• Providing defense mechanisms against the three types
of threats described in Section 2.

4. The ANON Infrastructure
The ANON infrastructure consists of a set of anony-

mizing forwarders and some number of initialization
servers, as depicted in Figure 1. Forwarders will encrypt
and decrypt IP addresses, whereas initialization servers
will provide clients with handles to target servers, which
consist of nestedly encrypted addresses of target servers
and addresses of entry forwarders. An overlay network
connects the forwarders. That is, a pair of forwarders may
be connected using a path involving multiple IP routers.
Request packets from a client to a target server will be
forwarded over a forwarding path consisting of a subset of
these forwarders. Reply packets from the target server to
the client will use the same path in the reverse direction.
For different reply-request sessions, different forwarding
paths may be used.

Some trusted third parties will operate the anonymizing
forwarding infrastructure. Since forwarders may decrypt IP
addresses and thereby have access to the IP addresses that
ANON intends to hide, it is important that forwarders are
properly protected from being compromised. As
mentioned earlier, we assume in the analysis of this paper
that forwarders cannot be compromised. To increase avail-
ability, forwarders may use anycast-style addressing
[8,12], so that any of a number of forwarders using the
same anycast address may forward a packet sent to it.

The role of initialization servers is to provide clients
with handles to target servers. Thus, initialization servers
and server handles provided by them need to be properly
authenticated, using, e.g., digital certificates, to ensure that
these server handles will be trustworthy. In addition,
initialization servers may need to be replicated in various
locations to ensure their high availability. 

Consider, for example, the case of hiding the IP address
of a target server from clients. In this case, the use of
ANON will involve three usage steps: 

• Server registration. A target server whose IP address

Figure 1. The ANON infrastructure. F1, F2, and
F3 are anonymizing forwarders, and the solid
arrows indicate an instance of a packet for-
warding path.
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needs to be hidden will invoke a process that con-
structs handles for the target server by selecting
sequences of forwarders and using these forwarders to
compute nestedly encrypted addresses for the target
server, and finally registers the constructed handles at
initialization servers. For a given server handle, the
sequence of forwarders can be selected manually or
automatically, as well as statically or dynamically.
Note that initialization servers store handles, rather
than IP addresses of target servers, so compromising
an initialization server does not lead to compromise of
target servers’ address anonymity.

• Client initialization. Given a target server to which a
client wishes to access, the client obtains a handle to
the target server from an initialization server. The cli-
ent may use alternative handles, should the forwarding
paths corresponding to current handles fail to operate.

• Packet forwarding. Based on the information obtained
from the client initialization, ANON forwards packets
to and from the target server over the selected
sequence of forwarders. 

4.1. Notations and Assumptions
C: Client
S: Application Server 

• S has generated an asymmetric key pair of public and
private keys and S holds the private key. 

I: Initialization Server 
F: Anonymizing Forwarder 

• F is assumed to be outside firewalls or NATs of C, S
and I, should these firewalls or NATs exist. 

• F holds a symmetric key for all its forwarding opera-
tions. Each F has its own symmetric key not known to
others. Fs using the same anycast address share the
same symmetric key.

[X]: IP address of X 
• If X is a client behind a firewall or NAT, [X] is the IP

address as seen from the outside of the organization. 
• If X is a forwarder, [X] may be its unicast or anycast

address. 
[X]{payload}[Y] 

• A packet with its source and destination IP addresses
being [X] and [Y], respectively. 

(z)r, where r is a symmetric key 
• It is the content z encrypted in r. 
• When r is the lower case letter of the name of a for-

warder or server, r denotes the symmetric key of the
forwarder or server. For example, (z)f means z
encrypted in the symmetric key of forwarder F. 

(z)A, where A is the name of a forwarder or a server 
• It is the content z signed in A's private key or

encrypted in A's public key. In the former case, A did
the signing, whereas in the latter case another entity
did the encryption. 

X->Y: [X]{payload}[Y]
• X sends packet, [X]{payload}[Y], to Y. 

X: operation 
• X performs operation. 

4.2. Forwarding Operations

Depending on the application, a forwarder may perform
one of the forwarding operations listed below. Subsequent
usage examples will illustrate the usage of these opera-
tions. 
FWD-INC (“forward and include”): 

Input packet: [X]{msg, [Y]}[F] 
Output packet: [F]{msg, [X]}[Y] 

FWD-CLR (“forward and clear”): 
Input packet: [X]{msg, [Y]}[F]
Output packet: [F]{msg}[Y] 

FWD-ENC (“forward and encrypt”):
Input packet: [X]{msg, [Y]}[F] 
Output packet: [F]{msg, ([X])f}[Y] 

DEC-FWD-INC (“decrypt, forward and include”): 
Input packet: [X]{msg, ([Y])f}[F] 
Output packet: [F]{msg, [X]}[Y] 

DEC-FWD-CLR (“decrypt, forward and clear”): 
Input packet: [X]{msg, ([Y])f}[F] 
Output packet: [F]{msg}[Y] 

DEC-FWD-ENC (“decrypt, forward and encrypt”): 
Input packet: [X]{msg, ([Y])f}[F] 
Output packet: [F]{msg, ([X])f}[Y] 

In addition to these forwarding operations, a forwarder
may also support management operations such as target
servers' registration. 

4.3. Baseline Usage Example B1:
Hide Target Server's Address 

This example illustrates the use of ANON to achieve the
following two objectives:

• A client C sends a request to a target server S without
knowing S's address. 

• C receives a reply from S without knowing S's
address. 

As described earlier, client C first interacts with an
initialization server I. In its message to I, C expresses its
wish to access a target server S. Then the initialization
server I securely sends C a server handle, via, e.g., SSL,
containing the following two items: 

• [F], the unicast address of a forwarder F, or the anycast



address of a set of forwarders, also denoted by F. 
• ([S])f

When C wishes to send a request to S, it builds a request
packet containing the following content and sends it to [F]: 

• (req, ck)S, where req is C's request to S, and ck is a
cookie associated with the packet. (req, ck)S is (req,
ck) encrypted by S's public key. The purpose of ck is
to identify the request. After the packet is sent, C will
keep ck around, so that it can be used later to associate
the reply received from S with the request.

• ([S])f 

Upon receiving the request packet, F decrypts the
packet and forwards it to [S], with the source address of the
original packet, [C], as seen by F included in the packet
payload. That is, F performs the operation DEC-FWD-
INC. 

When S receives the request packet, it builds a reply
packet containing the following content and sends it to [F]: 

• (rep, ck)S: reply and cookie signed by S with its pri-
vate key. 

• [C]: the source address of the original packet as seen
by F. 

Upon receiving the reply packet, F forwards it to [C]
without including [S] in the packet payload, so [S] will not
be revealed. That is, F performs the operation FWD-CLR.
When C receives the packet, it verifies S’s signature on the
received reply and cookie using S's public key. By
comparing the received cookie with the original cookie
stored at C, C determines whether the received reply is for
the original request. 

We summarize usage B1 for hiding [S] as follows: 
C -> F: [C]{(req, ck)S, ([S])f}[F]

F: DEC-FWD-INC
F -> S: [F]{(req, ck)S, [C]}[S] 

S: reply 
S -> F: [S]{(rep, ck)S, [C]}[F] 

F: FWD-CLR 
F -> C: [F]{(rep, ck)S}[C] 

C: verify S’s signature and compare cookies 

4.4. Baseline Usage Example B2:
Hide Client's Address 

This example illustrates the use of ANON to achieve the
following two objectives: 

• S receives request from C without knowing C's
address. 

• S sends reply to C without knowing C's address. 

In this case, C will obtain [F] and [S] from an initializa-
tion server. We summarize usage B2 for hiding [C] as
follows: 

C -> F: [C]{req, [S]}[F]
F: FWD-ENC

F -> S: [F]{req, ([C])f}[S] 
S: reply 

S -> F: [S]{rep, ([C])f}[F] 
F: DEC-FWD-INC 

F -> C: [F]{rep, [S]}[C] 
C: receive reply and [S] 

Note that usage B1 and B2 can be combined to yield a
scheme that will hide both [C] and [S]. 

4.5. Enhanced Two-hop Usage Example:
Hide Target Server's Address 

This example is an enhanced version of baseline usage
example B1 above. It is designed to defend against an
attack related to the type 1 threat described in Section 2. In
this attack, an adversary, acting as C, repetitively submits
request: 

C -> F: [C]{(req, ck)S, ([S])f}[F]
while monitoring packet contents on links that could be on
the path from F to S and vice versa. If those packets on the
links that result from these repeated request submissions
are identifiable by link monitoring, then the adversary will
be able to learn [S] by examining destination or source
addresses of these packets. It is thus important to avoid
invariant bit strings in packet load, such as [C], (req, ck)S
and (rep, ck)S in usage example B1 above, or any invariant
tags the adversary may insert in his packets, that could be
used to identify these packets. 

ANON has provided mechanisms to protect itself
against this type of attack. In particular, the infrastructure
satisfies the “non-malleable, semantically secure packet
encryption” property [5]. That is, N repeated submissions
of the same packet will yield N different encrypted packet
payloads on a link, as depicted in Figure 2. In addition, in
the event when an adversary can change a packet by e.g.,
flipping a bit, the receiving forwarder can detect and
discard the altered packet. The property, referred to as non-
malleability, can prevent these packet tagging based
attacks.

Below is an enhanced version of usage example B1
satisfying this non-malleable, semantically secure packet
encryption property. It is a two-hop example, involving
forwarders F1 and F2. Client C gets as a handle to the
target server, (([S], s)f2, [F2])f1 and [F1], from an initial-
ization server, where s is a symmetric key of S.



C -> F1: [C]{req, ck, (([S], s)f2, [F2])f1}[F1] 
F1 -> F2: [F1]{req, ck, ([S], s)f2, [C]}[F2] 
F2 -> S: [F2]{(req, ck, [C])r1, (r1)s, {[C], [F1]}r2,

(r1, r2)f2}[S] 
S -> F2: [S]{(rep, ck)r1, ([C], [F1])r2, (r1, r2)f2}[F2] 
F2 -> F1: [F2]{rep, ck, [C]}[F1] 
F1 -> C: [F1]{rep, ck}[C] 

In ANON, the IPsec Encapsulating Security Payload
(ESP) [9] is used for the encryption of packet transport
between forwarders F1 and F2. Note that IPsec ESP has
built-in support for non-malleable, semantically secure
packet encryption. For each packet to be forwarded
between F2 and S, F2 randomly selects symmetric packet
keys r1 and r2 to implement non-malleable, semantically
secure packet encryption. One can verify that for the tw0-
hop example above, N submissions of the same packet by
C will yield N different encrypted packet payloads on path
segments from F2 to S and S to F2. For packet transport
between C and F1, there is no need to apply packet encryp-
tion, since [F1] is known to the client and the public
anyway.

It is straightforward to extend this two-hop enhanced
scheme to hide [C], or both [C] and [S], and to allow addi-
tional hops. 

5. ANON’S Countermeasures Against Threats
The ANON infrastructure provides countermeasures in

defense against threats described in Section 2. 

5.1. Defense Against Type 1 Threats

As illustrated in the enhanced two-hop usage example
above, ANON uses multi-hop forwarding in defending
against Type 1 threats where an adversary attempts to
discover the address of a target server. Note that the adver-
sary’s objective is to identify the exit forwarder, the one
that will have access to the decrypted IP address of the
target server. Starting from an entry forwarder, the adver-
sary would need to follow the forwarding path in order to

discover the exit forwarder. (For the illustrative scenario in
Figure 1, F1 is an entry forwarder and F2 is an exit
forwarder.) The longer the forwarding chain, the harder
must the adversary work. This is especially true if the
forwarders are under different administrative authorities,
since in this case the attacker will need to monitor links
belonging to all the involved authorities in order to
succeed. 

To prevent packet content from revealing forwarding
information, ANON uses non-malleable, semantically
secure link encryption, as we have described in Section 4.
Furthermore, to prevent packet headers from revealing
forwarding information, ANON uses protocol camou-
flaging so that packets forwarded by forwarders have indis-
tinguishable headers. 

Note that it is also possible for adversaries to deduce a
forwarding path by studying arrival and departure times of
packets at forwarders without even having to examine the
content of packets or their headers. For example, if the
mixing of traffic is not enough, e.g., when the network is
only lightly loaded, by tracing traffic with special temporal
patterns, also known as traffic tags, an adversary can trace
the forwarding path to reach the exit forwarder. Similar
techniques have been reported in the field of intrusion
detection to trace intruders who login through a chain of
machines (called stepping stones) to hide where they come
from [17]. 

To defend against these traffic analysis based attacks
such as traffic tagging attacks, ANON uses link padding,
which will inject artificial padding traffic into a link so that
timing statistics of packets on the link will look similar
with or without real traffic on the link. Link padding will
thus increase the difficulty for an adversary to succeed in
conducting traffic analysis. We will describe our link
padding algorithms in Section 6.

In addition, ANON supports dynamic re-selection of
forwarders and forwarding paths. A target server can
dynamically register forwarding paths so that a new
forwarding path can be used before the old one is cracked.
That is, target servers may change the forwarders they use
from time to time through the registration process.

Finally, ANON can address black box attacks [14], in
which an adversary treats the whole forwarding infrastruc-
ture as a black box in the sense that it would observe
packets going into and coming out from the infrastructure
and correlate them to determine who is talking to whom.
ANON prevents this type of attack by extending the infra-
structure to within the physically protected local area
networks of the communicating parties, through, e.g.,
VPNs as described in Section 8. This is equivalent to the

Figure 2. Semantically secure packet encryp-
tion
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effect that participating users of the infrastructure incorpo-
rates one or more forwarders within their trusted regions.

5.2. Defense Against Type 2 Threats

To defend against type 2 threats where adversaries may
conduct inband DOS attacks, ANON can reject packets
with spoofed source IPs and rate limit remaining traffic on
a per-source or per-destination basis. To implement rate
limiting, each forwarder alternates between two phases,
equalization and relaxation. The forwarder can use the
“push-back” technology [6] to send control signals to its
upstream forwarders to regulate the rate of traffic from
those nodes to the current forwarder. In the equalization
phase, if its current total rate is above certain high-water
mark threshold, a forwarder will increase its push-back
signal to upstream forwarders that have relatively larger
traffic usage at present. In contrast, in the relaxation phase,
if its current total rate is below certain low-water mark
threshold, a forwarder will reduce its push-back signal to
upstream forwarders that have relatively small traffic usage
at present. This rate-limiting scheme can keep the utiliza-
tion of the ANON network at a reasonably high level and
its packet loss rate due to congestion at a reasonably low
level, while blocking large users, including DoS attackers,
from taking away bandwidths that other small users may
need. 

5.3. Defense Against Type 3 Threats

To defend against type 3 threats where adversaries may
conduct outband DoS attacks, ANON can use multiple
entry forwarders for the same target server. For example,
multiple handles to the server can be made available to
clients, so that unless an adversary is able to bring down all
the entry forwarders the server is still reachable. Redun-
dant forwarders can also be made available through the use
of anycast addresses, or multiple lookup hash functions
when an overlay network for lookup services such as
Chord is used (see Section 7). DoS attacks at forwarders
other than entry forwarders will not be possible unless their
addresses become known to the attacker. This leaking
should not happen if countermeasures against type 1
threats work. 

We note that the mechanisms to defend against type 1
and type 3 threats are mutually reinforcing. It is easy to see
how the capability of hiding the addresses of forwarders
can help defend against DoS attacks on them. Conversely,
as described in Section 2, an adversary may launch conges-
tion-based attacks on links or DoS attacks on forwarders to
deduce path information. For example, if an adversary can
disable forwarders at will by DoS attacks, then by continu-
ally sending requests to a particular target server while

DoS attacking forwarders one by one, he can deduce which
forwarders are on the path. This is because once the adver-
sary brings down any forwarder on the path, he will notice
the absence of the replies from the target server. Hence,
improving forwarders’ capabilities of defending against
type 3 threats will further improve their capabilities of
defending against type 1 threats.

6. Link Padding
Link padding [14] concerns the problem of hiding the

presence of real traffic from adversaries. As we have
pointed out in Section 5.1, link padding is a necessary
countermeasure to defend against traffic analysis based
attacks when the load is light. 

In link padding, the source node of a link will pad the
link with artificial padding traffic, which we will also call
cover traffic in this section, with the objective that the link
will exhibit the same traffic statistics no matter whether or
not real traffic is present. By using cover traffic on a
superset of those links where real traffic traverses, an
adversary will not be able to use traffic analysis to find out
which subset of these links actually carries real traffic.

There are various types of link padding. The traditional
one, which we call flat link padding, inserts padding traffic
to a link so that the total link usage is constant [14]. This
type of link padding is simple but can be bandwidth costly.
In contrast, as proposed in this section, on-demand link
padding inserts cover traffic only when real traffic is
present, whereas probabilistic link padding inserts cover
traffic in a stochastic manner to allow certain bursts in the
application traffic to pass through without raising the
average padding load.

6.1. A Model Problem

We describe a model problem that we will use in this
section to study link padding. Although it is simple, this
model problem captures essential issues of link padding.

In this model, we consider the scenario where a network
path between a client C and a target server S needs to be
hidden, such as a forwarding path in the ANON infrastruc-
ture. The basic protection strategy is that whenever C and S
communicate, cover traffic will be generated over multiple
network paths, so the total traffic on all these paths looks
statistically the same, where the total traffic is defined to be
the sum of both cover and real traffic.

We assume that a balanced tree network, as depicted in
Figure 3, is used for hiding a path between C and S, with C
being at the root and S being at a leaf. Given a path to be
hidden, we further assume that the tree is fixed for a period
of time in order to guard against intersection attacks [14].



6.2. On-Demand Link Padding

The basic concept of on-demand link padding is to add
padding traffic based on the bandwidth usage observed
from real traffic. This allows padding to be applied only
when real traffic is present. Moreover, this allows the
amount of the padding to be limited at a level just sufficient
to cover real traffic.

6.2.1. On-Demand Link Padding with Delay

The first of the two implementations of on-demand link
padding we will describe is on-demand link padding with
delay.

Consider first real traffic from C to S in our model
problem of Section 6.1. We break the traffic sent by C into
consecutive data segments, each lasting for one RTT, the
round-trip time for the path between C and S in the tree
network of Figure 3. When a segment departs from C, it
will stay in a delay buffer at the output port of C for 2RTT.
During the first RTT, an averaging bandwidth usage of the
segment is measured. During the second RTT, a signaling
message is sent by C to all the tree nodes requesting them
to generate padding traffic so that the total traffic sent over
each link will be sent at a rate equal to the measured band-
width. At the end of the second RTT, if C has received
sufficiently many acknowledgements from the tree nodes,
it sends out the segment at the rate of the measured band-
width over a period of RTT.

For real traffic from S to C, an approach similar to the
one described above is used. There is a delay buffer in the
output port of S. When the bandwidth of the current
segment sent by S has been measured, S will send a notifi-

cation about the measured bandwidth to the root C so that
C can signal all tree nodes to generate proper padding
traffic. The delay buffer in this case needs to be extended to
reflect the additional delay for S to send the bandwidth
notification to C.

As shown in Figure 4, we use a pipeline architecture to
process three consecutive segments simultaneously at three
pipeline stages. The three stages, each being RTT long, are
for bandwidth measurement, signaling and data sending,
respectively.

Since the bandwidth usage of a segment is measured
before the target rate of link padding is set, on-demand link
padding with delay can target the total link bandwidth
usage to be exactly at the measured bandwidth. This means
that, in on-demand link padding with delay, there is no
need to waste network bandwidth on the path for cover
traffic. However, this advantage is achieved at the expense
of delaying traffic for 2RTT.

6.2.2. On-Demand Link Padding with Headroom

Our second implementation of on-demand link padding
is on-demand link padding with headroom. This implemen-

Figure 3. The cover-traffic tree for our model
problem of Section 6.1. C is the client and S is
the target server. The diagram on the left illus-
trates that the total traffic on the path from C
and S is the sum of real and cover traffic, while
that on any other link is just the cover traffic.
The two diagrams on the right indicate that at
any given time the total traffic over any link
looks the same with or without real traffic. 
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tation is of interest because it does not require extra delay.
We describe the idea by considering real traffic from C to S
in Figure 3. By using a traffic shaper, as shown in Figure 5,
we can ensure that any bandwidth increase in the current
segment is limited to the allowed range. This means that
the current segment can be sent out without delay.

However, this zero-delay link padding method suffers
from the drawback that large headroom will be needed to
accommodate real traffic that has large bandwidth usage
fluctuations between consecutive segments. Large head-
room results in large use of network bandwidth in link
padding.

To address this link efficiency issue, the input queue in
the traffic shaper of Figure 5 will be used to absorb band-
width usage fluctuations between consecutive segments,
thereby reducing the need of large headroom. The
queueing required in the traffic shaper, however, could
introduce delay. Thus when using on-demand link padding
with headroom, one can trade off network utilization
caused by the headroom for lowered queueing delay
caused by the traffic shaper.

6.2.3. Illustrations

We illustrate the two implementations of on-demand
link padding in Figure 6. In Figure 6(a) we show that the
2RTT delay is required by on-demand link padding with
delay. For example, the first segment S1 is sent using the
bandwidth measured during S1 BW and the signal deliv-
ered during S1 SIG. Figure 6(b) shows that using on-
demand link padding with headroom, we can send
segments without delay. For example, the third segment S3
is sent using the bandwidth measured during S1 BW and
the signal delivered during S1 SIG. Since the method
imposes a limit that the bandwidth actually used by S3 will

be less than the sum of the measured bandwidth and head-
room, we can ensure that the traffic of S3 will not stick out
above the total traffic seen on other paths.

6.3. Probabilistic Link Padding

The basic concept of probabilistic link padding is to
generate cover traffic in a probabilistic rather than deter-
ministic way. The total traffic on all the links in the system
including real and padding traffic will follow a given distri-
bution communicated to all participating nodes before-
hand. This allows variable-rate real traffic to be covered by
a similar padding traffic, in order to decrease the required

Input QueueTraffic Shaper: 
Ensure Headroom
Not To Be Exceeded

C

Token Bucket:
Implement Link Padding

Packets May Drop
When Input Queue Is Full

Figure 5. Traffic shaper installed at the client C
when using on-demand link padding with
headroom. The traffic shaper will shape the
outgoing traffic from C and cap rate increases
within the allowed range absorbable by the
headroom size. If the traffic rate of C continues
to increase, the input queue will build up, and
eventually packets will be dropped after the
queue fills up.

Figure 6. Sending rate as a function of time in
on-demand link padding. Both (a) and (b) show
the pipeline depicted in Figure 4. The upper
diagram (a) shows the 2RTT delay. For exam-
ple, S1 is sent using the bandwidth measured
during S1 BW and the signal delivered during
S1 SIG. The lower diagram (b) shows that with
sufficient headroom we can send segments
without delay. For example, S3 is sent using
the bandwidth measured during S1 BW and the
signal delivered during S1 SIG. Since the sum
of the measured bandwidth and headroom is
larger then the bandwidth required by S3, we
can send it without delay.
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padding traffic. As long as the total traffic on all links has
the same statistical characteristics, an adversary will not be
able to distinguish between a real forwarding path and a
dummy path by monitoring links. This scheme would
allow an increased level of bursts of real traffic without
compromising path anonymity, as well as the use of real
traffic from other applications that satisfies certain desired
traffic distributions as cover traffic.

In probabilistic link padding, we discretize time into
epochs, within each of which the traffic rate remains the
same. The traffic rate of each epoch is drawn indepen-
dently from a given distribution, such as a heavy-tail distri-
bution. We call the rates in a sequence of consecutive
epochs a rate sequence hereafter.

Since the bandwidth need of the real traffic may not
coincide with the current rate in the rate sequence, conges-
tion could happen. In this case the real traffic queue at the
token bucket, such as the one in Figure 7, will grow
beyond certain threshold. Probabilistic link padding deals
with this problem by allowing some of the bursts to pass
through to alleviate congestion, while minimizing distur-
bance to traffic statistics.

In order to make long-term statistics indistinguishable
over all links with or without real traffic, when congestion
is detected, we reorder rate sequences instead of generating
new ones. Specifically, when the queue occupancy at the

real-traffic token bucket, as depicted in Figure 7, exceeds
certain threshold, we search in a pre-generated rate
sequence for a rate larger than the current rate and schedule
a swap after a randomized swap delay. This randomized
delay prevents an adversary from detecting predictable
responses resulting from load with high regularity such as
regular traffic pulses. For similar reasons we impose a
randomized recovery time, which is the number of epochs
to wait before the next swapping can occur.

6.4. Discussions

We have used ns-2 simulator [1] to study the two link
padding algorithms. The simulation results show that
communication paths can be hidden effectively and effi-
ciently. However, due to space limitation of this paper, we
will not report the detailed simulation results and figures
here. Instead, we focus in this section on more qualitative
aspects of our link padding algorithms.

Note that in a real-world situation, multiple clients can
request for cover traffic on multiple trees at the same time.
If a node receives multiple requests for cover traffic, the
node can try to meet the sum of all the requests or a subset
of them. As depicted in Figure 4, the node sends out replies
in the signaling stage to notify each of the requesting
clients whether or not their individual requests can be met.
Replies or acknowledgements destined to a same client
may be combined or piggybacked in data packets to save
bandwidth when necessary.

We envision a hybrid scheme where both on-demand
and probabilistic link padding are used at the same time.
From our simulation results, we have found that for on-
demand link padding to be effective, we need a reasonably-
sized queue to absorb traffic bursts. Use of probabilistic
link padding on top of on-demand padding would allow
bursts to be cleared at a faster rate by swapping a larger
rate in the future into near future from a rate sequence.
Therefore probabilistic link padding may help on-demand
link padding to reduce queue occupancy while maintaining
the same packet drop rate. On the other hand, on-demand
link padding will change the traffic rate dynamically so
that an adversary can not observe for a long enough period
in order to obtain the required statistical significance. By
changing the rate frequently enough, the method will limit
the adversary’s observation period and hence reduce the
effectiveness of statistical correlation based attacks, which
use various statistical tests.

Finally, we note that if signaling packets are lost during
an epoch, then those participating nodes that do not receive
signaling will not be able to provide cover traffic. This
means that these nodes that fail to provide cover traffic can
not be the real clients (or the real target servers). As an
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adversary observes for more and more epochs, eventually
it might be able to find out the true IP address of the real
client (or the real target server) by taking intersection. We
note that this problem can be mitigated by letting partici-
pating nodes lie about whether they have received
signaling packets. For example, false information can be
given to the adversary if, with certain probability, the client
(or the target server) will not send out real traffic for that
epoch, thus pretending to be a cover traffic providing node
that fails to receive signaling packets in that epoch. The
adversary will then need to increase his statistics gathering
in order to figure out the real client or target server.

7. Use of Fault-tolerant Transport in ANON
The ANON infrastructure uses a fault-tolerant overlay

network to transport packets among its forwarders. This
enhances ANON’s resilience against outband DoS attacks
aiming at forwarders and network paths connecting them,
as well as possible infrastructure failures. We illustrate the
idea by considering Chord [16], a fault-tolerant overlay
network originally designed for peer-to-peer object sharing
purposes.

We first give a brief overview of Chord. Each object, be
it a participating node or a file to be stored, has a Chord ID,
obtained by taking the hash value of whatever identifies the
object. We call the range of the hash function the ID space,
in which IDs are ordered on an ID circle, with the largest
ID connected to the smallest. Every participating node in
Chord are identified by its Chord ID, obtained by hashing
the IP address of the node. Each node has two neighbors in
the ID space; the one with a smaller ID is referred to as the
predecessor, while the one with a larger ID as the
successor. Every node is responsible for those objects
whose IDs are between its own ID and that of its prede-
cessor. Given an object’s Chord ID, it is straightforward to
route the requests for that object in Chord; each node
simply forwards the requests to the node with the closest
Chord ID that it knows. Further routing optimization is
achieved by connecting the nodes in a way that is similar to
the topology of a hypercube: each node has as its neighbors
those nodes whose IDs are closest to its own ID plus all
powers of two modulo the size of the ID circle.

It is straightforward to extend ANON to use a Chord
network to transport packets among forwarders. This
scheme, which we call ANON over Chord, uses nestedly
encrypted Chord IDs instead of IP addresses, as depicted in
Figures 8. A forwarder is reachable by its responsible
Chord node, determined by the hash value of the
forwarder’s IP address. For example, node N53 is respon-
sible for F2 since the hash value of F2’s IP address,
denoted by h([F2]), is 44, and node N53 is in charge of 44.

This is similar to how an object stored in Chord is found by
using the hash value of the object. 

With Chord being used to forward packets, outband
DoS attacks related to type 3 threats of Section 2 now refer
to attacks on the Chord network or forwarders themselves.
Note that a Chord network is fault-tolerant in the sense that
each node has redundant information about their neigh-
bors’ neighbors, so that when a neighbor is down, a node
can reach the neighbor’s neighbors to repair connectivity.
Thus with this fault-tolerant capability, ANON can miti-
gate these outband DoS attacks of the Chord network,
using the recovery process illustrated in Figure 9. 

To defend against outband attacks on forwarders them-
selves, ANON can use redundant forwarders. That is, a
forwarder can have multiple copies deployed at various
locations, with each forwarder copy associated with a sepa-
rate hash function hi for some i. We use F to denote the
group of a forwarder and all of its copies. For each
forwarder copy in the group, the responsible Chord node is
determined by hi(F), where hi is the hash function associ-
ated with the forwarder copy, and F is the group ID. When
a packet is unable to reach a given forwarder copy, a
randomly selected hi will be applied to F to determine a
new Chord node to reach that could be responsible for
another forward copy in the group.

Note that when Chord is used, link encryption and link
padding will be applied to links of the Chord network.
These provide some additional advantages. First, packets
being forwarded no longer reveal the IP address of the
next-hop forwarder. Second, bandwidth allocation for link
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padding can be made efficient for a low-connectivity
overlap network such as the Chord ring. That is, link
padding on a Chord link can be provided at a rate just
above the expected maximum aggregate bandwidth an
adversary's attack may command, while being able to
defend against congestion-based attacks.

The ANON forwarder's interface to a Chord node is
general. It can work with other fault-tolerant low-connec-
tivity overlay networks to achieve similar advantages
described above.

8. Testbed Implementation
We have implemented a laboratory testbed for ANON at

Harvard, which supports basic functions including protocol
camouflaging, link encryption, link padding, rate limiting,
and a simple fault-tolerant transport network. The testbed,
depicted in Figure 10, uses nodes implemented on top of
the FreeBSD operating system. The FreeBSD divert socket
is used to implement various header processing operations
at the user-level. For the symmetric key algorithm, the
testbed uses the AES reference implementation from NIST.

The testbed includes NAT gateways, GWc for clients
and GWs for servers. These gateways allow existing

clients and servers to use the testbed without modifica-
tions. Clients and servers may connect to their respective
gateways directly or via a VPN connection.

The current testbed implementation can achieve a
throughput of 5 Mbps. This performance, adequate for
signaling protocols and low-bandwidth data applications,
is made possible mainly because we have managed to
avoid using public key encryption and decryption in packet
forwarding, as illustrated in usage examples earlier.

9. Related Work
As we have described in this paper, ANON is for the

purpose of hiding addresses of communicating parties. The
system achieves this objective by providing an overlay
networking infrastructure where forwarders on a
forwarding path can decode nestedly encrypted addresses
for a target server. We compare ANON to other systems
which have related objectives and approaches.

Chaum proposed to construct an untraceable email
system MIX [2], in which an intermediate, trusted agent,
called a MIX node, batches and relays in a randomized
order collections of messages whose intended recipients
are encrypted using the public key of the MIX node. The
idea is general, and has served as the basis for many later
anonymizing communication systems. MIX has a simple
goal that even if an adversary is capable of observing all
network traffic, he cannot link a particular message in its
unencrypted form with the sender, who is hidden in the set
of all participating senders, called an anonymity set. This
includes the case where the recipient is the adversary trying
to figure out the identity of the sender. An adversary can
only obtain information that a participant may be commu-
nicating with one or more parties by noticing that partici-
pant is in the anonymity set, but he can not be sure with
which party or parties the participant is communicating.

MIX is designed to handle single-message exchanges; it
does not offer any mechanism that can defend against long-
term analysis, which can be especially hard to deal with
when an adversary has access to contextual information

N41

N53

N62

N19

N27

N30
N34

F2

F5

N3

N53
Cache:
44–[F2]
52–[F5]

Hello from [F2]

Neighbors:[N41],[N62],…

N41

N53

N62

N19

N27

N30
N34

F2

F5

N3

N62
Cache:
44–[F2]
52–[F5] Hello from [F5]

Neighbors:[N41],[N3],…

N53 down and hence
removed from the system

Figure 9. The recovery process: if a Chord
node N53 is brought down by outband DoS
attacks or some other reasons, N62 will take
over the responsibilities of N53. Forwarders F2
and F5 will reassociate with N62 once they dis-
cover that N53 is no longer available. When a
forwarder is associated with a Chord node, the
forwarder learns the node’s neighbors to sup-
port the fault-tolerant mechanism.

Figure 10. Experimental testbed at Harvard.
GWc and GWs are NAT gateways that allow
existing clients and servers to use ANON with-
out modifications.

Server
Client

F1

F2
Initialization Server

F3

GWc

GWs



about the anonymous communication sessions such as
number of messages exchanged, active and inactive times
of communication, etc. With the aids of such information,
an adversary can launch what is generally termed as an
intersection attack [14]. A typical scenario would be: if an
adversary knows the times when a sender is communi-
cating with a particular recipient, then he may be able to
figure out who the sender is by taking the intersection of
the sets of active senders during these times.

We could, in theory, use MIX as a solution to the
problem of hiding addresses that ANON intends to solve,
by using the MIX node as the anonymizing infrastructure.
But such a solution would not be effective for several
reasons. First, the solution will not be able to defend
against long-term analysis as mentioned above. Second,
the solution will not support real-time packet forwarding,
since the MIX node may delay a message for an indefinite
amount of time before it receives enough messages to form
a batch. Third, we will face a dilemma in determining the
size of the anonymity set required for the mix operation.
On one hand, naturally we would like to have as large as
possible an anonymity set better anonymity. However,
once the size of the anonymity set is larger than the
capacity of the MIX node, we open up opportunities for
intersection attacks. On the other hand, if we keep the
anonymity set reasonably sized so as not to exceed the
capacity of the MIX node, it will take relatively a small
amount of resources for the adversary to launch DoS
attacks on nodes in the anonymity set to further shrink the
set. In contrast, ANON attempts to hide a target server in a
large candidate set of possible servers unknown to users
and adversaries. By using a sufficiently large candidate set,
ANON can ensure that indiscriminating DoS attacks on all
these candidate servers will be infeasible. By using link
encryption and link padding, as well as extending the infra-
structure to the trusted regions such as physically protected
local area networks near clients and target servers, ANON
can defeat intersection attacks.

Onion routing [15] is an extension to MIX that supports
real-time packet forwarding. Similar to ANON, onion
routing uses nestedly encrypted addresses, called onions, to
reach target servers. The corresponding sequences of
forwarders, called onion routers, can decrypt these
encrypted addresses. In order to avoid expensive public
key operations on a per-packet basis, onion routers store
session keys for a connection. The sender of a connection
first chooses a sequence of onion routers to traverse and
constructs an onion that consists of the addresses of the
onion routers with nested encryption applied. (The sender’s
choice of a route is similar to that in Mixmaster [3].) Then
a connection is set up for subsequent messages, and each
message is forwarded along the circuit formed by the onion

routers specified in the onion. In contrast, forwarders in
ANON store no connection states. Because of this stateless
property of ANON, redundant forwarders can readily take
over the jobs of failed or overloaded forwarders. 

Moreover, unlike ANON, onion routing does not intend
to hide the IP address of a target server; in fact, the sender
must know this address in order to construct an onion for
the target server. In ANON, the sender will be given a
server handle to the target server, instead of building its
own onion.

When facing an adversary capable of monitoring links,
it is pointed out in [15] that link padding among onion
routers is necessary; however, the details as how to pad the
links are left unspecified. Note that link padding needs to
be deployed on a superset of those links which carry anon-
ymous traffic, but it is unclear in onion routing what this
superset would be.

Many extensions to and improvements over onion
routing have been reported recently. Tarzan [7] is an IP-
layer anonymizing network with similar goals as onion
routing, which are different from ANON’s primary goal of
providing address anonymity for target servers. Tarzan
uses a peer-to-peer networking infrastructure as opposed to
ANON’s use of a network resident set of forwarders
managed by trusted third parties. Tarzan does not address
inband or outband DoS attacks on forwarding nodes as
ANON does. In fact, inband DoS attacks could represent a
serious threat in Tarzan. This is because, due to its peer-to-
peer nature, it is fairly easy for an adversary to have his
nodes join the network and then launch inband DoS attacks
from the nodes, as described in Section 2.

SOS [10] is a Chord-based [16] overlay network that
aims to provide survivability under outband DoS attacks.
SOS uses the fault-tolerant property of a Chord network as
the main mechanism to defend against such attacks. To
protect a target server from being DoS attacked, the server
first secretly recruits several servlets, whose addresses are
to be kept secret. Only these chosen servlets can send
messages to the server, which can be done by setting up
appropriate filters on the edge routers located at egress
points of the core network to the server. The addresses of
the servlets are secretly communicated to a number of
beacons determined by applying different hash functions to
the IP address of the server. Only authenticated clients can
send messages to the server. This implies that unlike
ANON, SOS does not address inband DoS attacks, nor
inband packet or traffic tagging attacks. Authenticated
clients can then send messages to servers by first sending
the messages to beacons via Chord, and the beacons will
relay the messages to the server through servlets. If any of
the nodes, including beacons and servlets, along a path is



brought down by an adversary, Chord will try to repair the
network by connecting the neighbors of the failed node.
Therefore, an adversary would now need increased
resources to launch long lasting attacks in order to stop the
communication between clients and servers, as short-term
damage can be quickly repaired by Chord.

SOS makes a few assumptions that are different from
ANON’s. First, as mentioned above, SOS does not provide
protection against inband attacks, in which an adversary
launches attacks from within the system, e.g., by flooding
the network with requests from legitimate clients. In
contrast, ANON is designed with inband attacks in mind,
so ANON is equipped with rate limiting to defend against
inband DoS attacks, as well as link encryption and link
padding to defend against packet and traffic tagging
attacks, respectively. Second, SOS does not try to preserve
the anonymity of the communicating parties, though it is
preserved under a weaker adversary model that an adver-
sary can not monitor links. ANON assumes a stronger and
more realistic adversary model that allows adversaries to
monitor links, as justified in Section 2.

10. Summary and Concluding Remarks
We have described an anonymizing infrastructure at the

IP layer. The infrastructure is specially designed for low- to
medium-bandwidth applications such as authentication,
authorization and instant messaging. We have illustrated
usage examples of hiding addresses of servers and clients.
By employing a suite of countermeasures, such as non-
malleable, semantically secure packet encryption, link
padding and rate limiting, we have shown that even if an
adversary is capable of monitoring links, it would be diffi-
cult for him to compromise the anonymity provided by the
infrastructure. Likely, the only way an adversary can
succeed is to take on the direct attack of compromising
forwarders one by one. By using trusted third parties to
manage the forwarding infrastructure, in a way similar to
how current backbone routers are managed, we can make
sure that compromising forwarders would be very difficult.

To lower the bandwidth cost of link padding, we have
designed two novel algorithms that can generate padding
traffic in an economical manner without sacrificing
anonymity. We have also sketched an approach of using
fault-tolerant overlay networks to enhance the resilience of
the anonymizing infrastructure against attacks and failures.
To demonstrate the implementation feasibility, we have
developed a laboratory testbed.

An important next step that we plan to carry out is
application trials of this anonymizing infrastructure. When
sufficient experiences have been learned from these appli-
cation experiments, we will consider the possibility of

incorporating some of the anonymizing features into
routers.
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