
For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Copyright © Scott Bradner & Ben Gaucherin 2015

Distributed software
Introduction

CSCI E 45a: The Cyber World – part A

1

Learning goals

• Understand how

collaborating pieces of
software make today’s most

complex systems possible

• Understand the history and
evolution of the

technologies involved

Copyright © Scott Bradner & Ben Gaucherin 20152

Distributed software systems

• Multiple hardware/software

components

• Working together (using the
network)

• Appearing to the user as a
single coherent system

• To distributed software

systems, a network is
assumed

Copyright © Scott Bradner & Ben Gaucherin 20153

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Examples of distributed systems

• Large enterprise systems
HR and financial systems,
Student Information System,
supply chain management
systems, etc.

• Complex websites
e-commerce sites, travel
booking, banking, etc.

• The Internet, the Web

• Distributed people systems
Amazon’s mechanical turk,
distributed call centers, etc.

Copyright © Scott Bradner & Ben Gaucherin 20154

Examples of distributed systems, contd.

• Very large computing

problems to solve

• And the problem can be
broken into many small,

simple, like problems

Computer graphics for movie
effects, financial markets
simulations, weather
models/simulations, encryption

cracking,

finding aliens – SETI@Home

Copyright © Scott Bradner & Ben Gaucherin 20155

Big data, distributed processing

• Recent term describing

incredibly large data sets
and the ability to infer new

information/insight from
these enormous sets of data

• The 3 “V’s”:

Volume, Velocity, Variety

Copyright © Scott Bradner & Ben Gaucherin 20156

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Big data, distributed processing, contd.

• Tools for big data

Google’s MapReduce

Map – queries are split and
distributed across parallel nodes

Reduce – results are gathered

Apache’s Hadoop

Copyright © Scott Bradner & Ben Gaucherin 20157

Why distributed systems?

• When a single (even if very
powerful) machine can’t
meet all of the requirements

Copyright © Scott Bradner & Ben Gaucherin 20158

Why distributed systems?

• Scalability & performance
To support large/dynamic
populations of concurrent users

To manage large/complex
processes, computations, and
sets of data

To better adjust resources to
what is needed

• Resiliency, Availability

• And a few other things:
Modularity, sharing of resources,
incremental change, etc.

Copyright © Scott Bradner & Ben Gaucherin 20159

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Topics

• Key terms and concepts - R
What are the key elements and
characteristics of distributed
systems

• Basic mechanics - R
How does it work “under the
hood”

• Evolution of architectures -
R
From mainframes,
to client/server, to web
applications and services

Copyright © Scott Bradner & Ben Gaucherin 201510

Topics

• Sample website - R
Using a fictitious sample website
to illustrate some of the common
elements of today’s large
distributed systems

Copyright © Scott Bradner & Ben Gaucherin 201511

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

4 Oracle, SAP, PeopleSoft, Expedia, Amazon Mechanical Turks,
eBay, Bank of America, Netflix logos

5 http://2.bp.blogspot.com/-
YHM1cInJgkw/UME325IY_uI/AAAAAAAABrQ /ALvRIEkly3Y/s1600 /jt r-

crossword-10-donation_de sign.p ng

5 "Setiathomeversion5point15 ". Licensed under LGPL via
Commons -

https://commons.wikimedia.org/w iki/Fi le:Setiath omevers ion5 point15.png
#/media/File:Setiathomeversion 5po int1 5.png

6 Big Data word cloud http://allterrain.net/wp-

content/uploads/2014/04 /B ig-data.jpg

8 "Cray2" by NASA - http://gimp-savvy.com/cgi-

bin/img.cgi?ailswE7kkmL1216740. Licensed under Public Domain via
Commons -

https://commons.wikimedia.org/w iki/Fi le:Cray2.jpeg# /med ia/F ile:Cray2.jp
eg

9 Oracle, SAP, PeopleSoft, Expedia, Amazon Mechanical Turks,

eBay, Bank of America, Netflix logos

Copyright © Scott Bradner & Ben G aucherin 201512

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

10 Napster and JSON logos

10 "Televideo925Terminal". Licensed under Public Domain via

Commons -
https://commons.wikimedia.org/w iki/Fi le:Telev ide o925 Terminal.jpg#/me di

a/File:Televideo925Terminal. jpg

11 healthcare.gov logo

Copyright © Scott Bradner & Ben G aucherin 201513

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Distributed software
Key terms and concepts

CSCI E 45a: The Cyber World – part A

1Copyright © Scott Bradner & Ben Gaucherin 2015

Client, Server, or both?

• Client
The machine/software from
which requests originate

• Server
The machine/software
fulfilling the request

• A machine can be (and
often is) both client and
server
The role is context
dependent

Copyright © Scott Bradner & Ben Gaucherin 2015 2

Client, Server, or both?

• Peer to Peer – machines
are both client and server
No central server system in
the normal operations,
although one may be
needed to facilitate session
setup

Napster, BitTorrent, etc.

Copyright © Scott Bradner & Ben Gaucherin 2015 3

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Characteristics

• Support physical
separation of
components
Components interconnected
by a network

• Support scalability
By distributing the load on
multiple components, and
allowing the dynamic
addition of components to

handle a bigger load
Copyright © Scott Bradner & Ben Gaucherin 2015 4

Characteristics, contd.

• Support administrative
autonomy
Multiple boxes, multiple
administrators

• Support heterogeneity
No requirement to use
consistent
hardware/software

Copyright © Scott Bradner & Ben Gaucherin 2015 5

Challenges

• Security
Ensuring confidentiality,
integrity, and availability

What is the trust model
between components?

• Manageability
Getting a “system view”, and
configuration consistency

Consistent management of
individual components, by
different people

Copyright © Scott Bradner & Ben Gaucherin 2015 6

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Challenges, contd.

• Indeterminacy
Things will break (network,
services, etc.) and the
components need to handle
failure (e.g. time outs,
retries, etc.)

Copyright © Scott Bradner & Ben Gaucherin 2015 7

The 8 fallacies of distributed
computing

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Topology doesn't change

• There is one administrator

• Transport cost is zero

• The network is
homogeneous

1994 Peter Deutsch, 1997
James Gosling

Copyright © Scott Bradner & Ben Gaucherin 2015 8

Peter Deutsch

James Gosling

Language matters!

• Some language used in
technology is finally
being recognized as
offensive

• Time to shift to more
inclusive language
Terminology, Power, and
Inclusive Language in Internet-
Drafts and RFCs draft-knodel-
terminology-03

Copyright © Scott Bradner & Ben Gaucherin 2020 9

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

3 Napster, BitTorrent logos

8 http://www.wheels.org/spacewa r/st one/ deut sch.jpg

8 "James Gosling 2008" by Peter Campbell - self-made, Nikon D80.

Licensed under GFDL via Commons -
https://commons.wikimedia.org/w iki/Fi le:James_Go sl ing_2 008.jpg#/m

edia/File:James_Gosling_20 08.jpg

9 rootsofjusticetraining.org /201 4/04 /l ingu ist ic-racism /

Copyright © Scott Bradner & Ben G aucherin 2020 10

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Distributed software
Basic mechanics

CSCI E 45a: The Cyber World – part A

Copyright © Scott Bradner & Ben G aucherin 20151

Remote Procedure Call (RPC)

• Your code calls a functions
that appears to be “local” –
client stub

• The function call is
“marshaled” into a message

Marshaling: package up for
transmission

• The message is routed to the
actual location of the code

for the function called – the
server

Copyright © Scott Bradner & Ben Gaucherin 20152

Remote Procedure Call (RPC), contd.

• The message is “un-
marshaled” and the function
executed

• The result is “marshaled”
into a response message and
sent back to the client

• The client receives the
response message which is
“un-marshaled” processed as
the response to the function
call

Copyright © Scott Bradner & Ben Gaucherin 20153

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Remote Procedure Call (RPC), contd.

Copyright © Scott Bradner & Ben Gaucherin 20154

Different types of RPC:
Sy nchronous, asy nchronous, callbacks

Latency of remote calls

• Latency: time delay
experienced by a system

• Trade off between:
local processing latency

Local + network + remote
processing latency

• The further you go, the
bigger the time penalty
Intra-process

Inter-process – same host

Other host on LAN – interrupt
latency on target machine

Other host on WAN – network
buffering

Copyright © Scott Bradner & Ben Gaucherin 20155

A couple of different approaches

• #1 - Involving a client stub
created at the time the
interface is
defined/programmed – using
binary protocols
MS-RPC, DCE RPC, CORBA,
DCOM, Java’s RMI, etc.

Copyright © Scott Bradner & Ben Gaucherin 20156

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

A couple of different approaches

• #2 - Internet applications,
Web-RPC – distributed
interfaces are available and
“query-able” - using text or
binary Internet application
protocols
HTTP, SMTP, HTTP web services
(SOAP, XML-RPC, REST, Ajax, etc.),
etc.

• Latency gap between these
two approaches is shrinking

Copyright © Scott Bradner & Ben Gaucherin 20157

Interface Description Language (IDL)

• Language to define the
distributed interface

Objects, functions, data types,
etc.

• File created by the
developers of a distributed
interface

• Interface definition file is
compiled to generate:

Client stub

Server stub/skeleton

Copyright © Scott Bradner & Ben Gaucherin 20158

Interface Description Language (IDL)

• Example for a simple bank
account

interface BankAccount {

attribute float balance;

readonly attribute string

customer_id;

void makeDeposit(in float

amount, out float newBalance);

void makeWithdrawal(in float

amount, out float newBalance);

};

Copyright © Scott Bradner & Ben Gaucherin 20159

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Message formats: XML

• Originally, no broadly
accepted standard for
structuring messages

Mix of binary and text based
approaches

• eXtensible Markup Language
(XML)

Angled bracket tags to mark
beginning/end of structure

Structures can be nested

Copyright © Scott Bradner & Ben Gaucherin 201510

Message formats: XML

• Example
<person first=“Ben”

last=“Adams” gender=“M”>

 <interest>Books</interest>

 <interest>Poker</interest>

 <interest>Computers</intere

st>

</person>

Copyright © Scott Bradner & Ben Gaucherin 201511

Message formats: XML

• Intended to focus on
simplicity, usability

Text based/legible – in theory

• Powerful tool to navigate
XML tree structures

Document Object Model (DOM)

Copyright © Scott Bradner & Ben Gaucherin 201512

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Message formats: XML

• But…

Everybody wanted to come up
with their specialized schema of
XML

In many cases tended to be
verbose and complex (e.g. SOAP,
XSLT, etc.)

Mapping of XML tree structure to
programming language type
systems

Copyright © Scott Bradner & Ben Gaucherin 201513

Message formats: JSON

• JavaScript Object Notation
Collection of name/value pairs
(objects)

Ordered list of values (array)
e.g.:
{

 "first": “Ben",

 "last": “Adams",

 “gender": "M",

 "interests": [“Books",
“Poker", “Computers"]

}

• Because browsers support
JavaScript,
this is a better format to use
than XML

Copyright © Scott Bradner & Ben Gaucherin 201514

Using named resources

• Use names for resource
instead of more explicit
references/locators (e.g., IP
address)

• Names make location,
relocation, fail-over, etc.
transparent to user (and
parts of the system)

Copyright © Scott Bradner & Ben Gaucherin 201515

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Using named resources

• URIs – Uniform Resource
Identifiers

URLs – Locator for the resource

 e.g.
http://www.example.com/index.html)

URNs – Name without specifics

of where/how to access

 e.g. urn:isbn:978-0471316152

Copyright © Scott Bradner & Ben Gaucherin 201516

Using state

• State - Data maintained in
the various parts of the
system

Client side – cookies

Server side – (volatile) in memory
session data, (persistent) cloud
state storage and databases

• When servers maintain state,
they need to have a way to
identify the client

Retrieving cookies, or device
fingerprint

Copyright © Scott Bradner & Ben Gaucherin 201517

Using state

• Resiliency concerns

What happens if you don’t hit
the same server?

Session state stored in a way that
all other servers can access

What level of degradation is
experienced when state is lost?

• Security concerns

Who has access to these bits of
information?

Copyright © Scott Bradner & Ben Gaucherin 201518

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Using transactions

• Example
Bank transfer:

Debit account #1

Credit account #2

Both need to happen!

SABRE (Semi-automated Business
Research Environment) flight
reservation system

With people booking seats around
the globe, ensuring we do not end
up with more than one person in
each seat

Resource locking can be an issue!

Copyright © Scott Bradner & Ben Gaucherin 201519

Using transactions

• Transaction syntax – begin,
commit, rollback

• Two phase commit –
distributed transaction with a
coordinator node
1) Commit-request

2) Commit

• Transaction log - ability to
restore to a known state

• Early transaction managers:
ENCINA, Tuxedo

Copyright © Scott Bradner & Ben Gaucherin 201520

Transactions are ACID

Copyright © Scott Bradner & Ben Gaucherin 201521

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

Copyright © Scott Bradner & Ben G aucherin 201522

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

4 https://i-technet.sec.s-msft.com/dynimg/IC1965 78.gif

5 http://www.storynory.com/wp-

content/uploads/2013/09 /w hite-ra bbit. jpg

10 http://www.inc.com/uploaded_fi les /image /us ing-xml-
pop_3712.jpg

14 JSON logo

21 http://cdn.softwaretestinghelp.com/ wp-

content/qa/uploads/2013 /08 /DB-Te sting.jpg

Copyright © Scott Bradner & Ben G aucherin 201523

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Distributed software
Evolution of architectures

CSCI E 45a: The Cyber World – part A

Copyright © Scott Bradner & Ben G aucherin 20151

In the beginning

• Few people could afford
large scale computing
resources

Large research institutions

Large enterprises

Federal government

Copyright © Scott Bradner & Ben Gaucherin 20152

Mainframes and dumb terminals

Copyright © Scott Bradner & Ben Gaucherin 20153

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

And then came the network, but…

• No framework for building
distributed systems

• Developers would use the
network directly

Simple client/server

Raw socket, no standard for
messages, etc.

• UCLA LOCUS operating
system – early 80’s

Mobile VMs – Back to the
future…

Copyright © Scott Bradner & Ben Gaucherin 20154

Open Software Foundation’s DCE

• Distributed Computing
Environment

Early 90’s

• Comprehensive software
framework to develop

distributed computing
solutions
Remote Procedure Call (RPC),

Distributed file system, Threads,
Distributed Time Service,
Directory Name Service, Security
Services

Copyright © Scott Bradner & Ben Gaucherin 20155

DCE, why did it fail?

• Big and complex

For a given system, people only
really needed a small subset

• A collection of technologies
developed by different
vendors

• DCE assumed that
building/managing a
distributed system was less

complicated/costly than
building/managing a local
system

Copyright © Scott Bradner & Ben Gaucherin 20156

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Client/Server - Two-tier “fat” client

Copyright © Scott Bradner & Ben Gaucherin 20157

Client/Server - Three-tier “fat” client

Copyright © Scott Bradner & Ben Gaucherin 20158

A better RPC - distributed objects

• Instantiate objects that
appear local, but may be
remote

• Common Object Request
Broker Architecture –
(CORBA)

• Microsoft’s DCOM using
MSRPC

• Java’s Object
Serialization/RMI/EJBs

Copyright © Scott Bradner & Ben Gaucherin 20159

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

A better RPC - distributed objects

• Better than remote
functions/procedure

Objects contain both
functionality and state

• But state-full elements are
problematic
Make scalability and resiliency

harder

Make security harder

• And object RPC protocols
were difficult to use over

firewalls

Copyright © Scott Bradner & Ben Gaucherin 201510

And then came the Web

• Mid-90’s the World Wide
Web starts to be widely
deployed

• Web browsers became
generic clients

Available on all types of
operating systems

Ability to create application
specific interfaces

No more need to deploy
application specific clients

No more fat clients

Copyright © Scott Bradner & Ben Gaucherin 201511

Tim Berners-Lee

Web architectures – web application

Copyright © Scott Bradner & Ben Gaucherin 201512

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Service Oriented Architecture (SOA)

• Software without a UI

• Not a new
concept/construct, but lots
of hype

• Use software services

Logical groupings of remotely
accessible functions

e.g. Bank Account service –

balance, credit, debit

Not just web services

Copyright © Scott Bradner & Ben Gaucherin 201513

Service Oriented Architecture (SOA)

• Making possible a new form
of systems development:
“composable apps”

Coarse services by combining
granular services

e.g. Bank Fund Transfer service –
debit from one account, credit to
another

Business processes using
workflow software

Copyright © Scott Bradner & Ben Gaucherin 201514

Service Oriented Architecture (SOA)

• Brings out some really
complicated business issues

Acceptable time span of
processes/activities?

Where/how are humans
involved?

How to manage transactions and

failures?
Active management or

compensating transactions

Copyright © Scott Bradner & Ben Gaucherin 201515

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Web services/Web APIs

• Use HTTP as the base
protocol

• Use XML, or JSON for data
formats

Early standards: XML-RPC, SOAP,
JSON-RPC, RSS, etc.

Copyright © Scott Bradner & Ben Gaucherin 201516

Web services/Web APIs

• Often built as RESTful web
APIs

REpresentational State Transfer –
Roy Fielding (2000)

URL includes path into server
data/function structure

http:///www.mywebservice

.org/books/

http:///www.mywebservice

.org/books/9780471316152

Copyright © Scott Bradner & Ben Gaucherin 201517

Web architectures – web services

Copyright © Scott Bradner & Ben Gaucherin 201518

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Web services/Web APIs

• Used to create mashups

Creating composite views by

grabbing information from

multiple places

• Broad web APIs to major web
platforms

Amazon, Facebook, FedEx,
Google, UPS, USPS, Wikipedia,

etc.

Copyright © Scott Bradner & Ben Gaucherin 201519

Evolution of architectures

• Underlying themes:

From proprietary to open
standards

From expensive to commodity
items

From few components to many

specialized & redundant
components

Copyright © Scott Bradner & Ben Gaucherin 201520

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

2 "IBM Electronic Data Processing Machine - GPN-2000-001881"
by NASA - Great Images in NASA Description. Licensed under Public Domain

via Commons -

https://commons.wikimedia.org/w iki/Fi le:IBM_Electronic_Data_ Processing
Machine-_GPN-2000-

001881.jpg#/media/File:IBM_Electr onic_Data_P rocessing _Machine_-
_GPN-2000-001881.jpg

3 "Televideo925Terminal". Licensed under Public Domain via

Commons -
https://commons.wikimedia.org/w iki/Fi le:Telev ide o925 Terminal. jpg#/me di

a/File:Televideo925Terminal.jpg

3 "ASR-33 1" by Dominic Alves from Brighton, England - ASR 33

Teletype. Licensed under CC BY 2.0 via Commons -
https://commons.wikimedia.org/w iki/Fi le:ASR-3 3_1.jpg #/med ia/F ile: ASR-

33_1.jpg

4 http://i.ytimg.com/vi/Tz24YfmFApI/hqdefault.jpg

5,6 DCE logo

11 http://www.w3.org/Press/Stock/ Berner s-Lee/ smal l/TimBL-bw-

big-notie-400.gif_small. jpg

19 https://www.atmail.com/sites/default /fi les/b log/xma p-
mashup.png.pagespeed.ic.VNSdpilf1e.jpg

Copyright © Scott Bradner & Ben G aucherin 201521

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Distributed software
Sample website

CSCI E 45a: The Cyber World – part A

Copyright © Scott Bradner & Ben G aucherin 20151

Our sample website

• Let’s imagine we have to
build a large, and complex
website

• Serving large numbers of
customers

• In a business requiring
complex
workflows/processes

• And requiring exchange of
information with 3rd party
partners

Copyright © Scott Bradner & Ben Gaucherin 20152

Our sample website

Copyright © Scott Bradner & Ben Gaucherin 20153

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Load balancers

Copyright © Scott Bradner & Ben Gaucherin 20154

Load balancers

• Load balancing: spreading
the load between resources

Also helps with resiliency

• Local load balancing

Spreading the load between local
servers

• More global load balancing

Domain Name Server (DNS)

Content Delivery Networks
(CDNs)

Copyright © Scott Bradner & Ben Gaucherin 20155

Internet application protocol servers

Copyright © Scott Bradner & Ben Gaucherin 20156

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Internet application protocol servers

• HTTP or Web server

Basic commands: HEAD, GET,
POST

Common Gateway Interface (CGI)
– delegate generation of web
resource to an executable

• SMTP or Mail server

• Etc.

Copyright © Scott Bradner & Ben Gaucherin 20157

Indexing/search servers

Copyright © Scott Bradner & Ben Gaucherin 20158

Indexing/search servers

• Ingest massive quantities of
content, to make it easily
searchable

• Two basic models:

Inverted index

faceted index

• Interface to the
indexing/search service is
often HTTP based

Copyright © Scott Bradner & Ben Gaucherin 20159

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Application servers

Copyright © Scott Bradner & Ben Gaucherin 201510

Application servers

• Software dedicated to host
applications

• Provides a lot of supporting
functionality

Security, load balancing, state
management, transaction
management, database
connections, etc.

Also provide the “remoting”
infrastructure

Copyright © Scott Bradner & Ben Gaucherin 201511

Database servers

Copyright © Scott Bradner & Ben Gaucherin 201512

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Database servers

• Make databases available
over the network using
standardized query/response
format

• Much evolution in database
architectures and capabilities

Flat files, ISAM/VSAM, SQL, no-
SQL

Copyright © Scott Bradner & Ben Gaucherin 201513

Relational/SQL databases

• The most popular
architecture today

• Data stored in tables

Columns are fields

Rows are records

• Data manipulated using

Structured Query Language
(SQL)
CREATE, INSERT, UPDATE, SELECT

Example - SELECT * FROM

customer WHERE

customer_age > 18

Copyright © Scott Bradner & Ben Gaucherin 201514

New DB models emerging

• No SQL databases

Built around less rigid structures

Many have a tight affinity to

JavaScript

And make their data available as
JSON

• Search indexes are also
databases of sorts

Copyright © Scott Bradner & Ben Gaucherin 201515

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Integration servers

Copyright © Scott Bradner & Ben Gaucherin 201516

Integration servers

• Allow applications to
exchange information

• Exist to…
Reduce the number of point to
point connections

Provide better management of
flow of data/integration

• Combine adapters and
message based structures
Adapters – provide standardized
interfaces into diverse systems
(file systems, enterprise
applications, etc.), like a
“message” outlet into a system

Copyright © Scott Bradner & Ben Gaucherin 201517

Integration server

Integration servers, contd.

• Cover a broad spectrum of
scenarios

infrequent transfer of large
amounts of data – Extract

Transform & Load (ETL)

High volumes of very small
messages (queue based,
pub/sub)

Copyright © Scott Bradner & Ben Gaucherin 201518

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Large scale supply chains and integration

• Enterprise integration as a
national imperative

Complex global scale supply
chain integrations

The Enterprise Integration Act of
2002

Yet, federal government not

showing strong abilities to
manage complex integrations

Copyright © Scott Bradner & Ben Gaucherin 201519

Perimeter firewalls

Copyright © Scott Bradner & Ben Gaucherin 201520

Internal firewalls

Copyright © Scott Bradner & Ben Gaucherin 201521

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Firewalls

• Perimeter filtering

Filtering the bits that come in

and out of the perimeters of the
organization

• Internal filtering

Filtering traffic between internal

hosts/subnets and ensuring that
only those hosts that are
expected to talk to each other do

Copyright © Scott Bradner & Ben Gaucherin 201522

Our sample website

Copyright © Scott Bradner & Ben Gaucherin 201523

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

2 Amazon, Netflix, eBay, Expedia, Bank of America

7 Apache webserver, Microsoft ISS 8 logos

9 Apache Solr, Elastic Search logos

11 JBoss, Apache Tomcat, Microsoft .NET logos

14 SQLite, MySQL, ODBC, PostgresSQL, Oracle, Microsoft SQL

Server logos

15 MongoDB, CouchDB logos

17 Microsoft BizTalk 2013, Informatica, IBM Integration Bus v.9
logos

19 Healthcare.gov logo

22 Juniper, CISCO logos

Copyright © Scott Bradner & Ben G aucherin 201524

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Distributed software
Conclusion

CSCI E 45a: The Cyber World – part A

Copyright © Scott Bradner & Ben G aucherin 20151

In summary…

• Distributed systems allow

The building of systems with
requirements that a single (even
powerful) machines could not

meet

• Building distributed systems
is challenging

Hard to reconcile the
requirements and keep things
simple

Components and network are
not reliable

Copyright © Scott Bradner & Ben Gaucherin 20152

In summary…

• Building/architecting a
distributed system consists of

Assembling pieces of software
that use the network to

communicate

Understanding the functional
building blocks needed (web
servers, database servers, etc.)

Understanding the scaling,
performance, security, resiliency
requirements

Copyright © Scott Bradner & Ben Gaucherin 20153

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

2 SETI diploma http://www.triskelion-lt d.com/psa.htm l

2 Bad bridge design http://wonderfulengineering.com/31-

engineering-mistakes-that-make-you-wonde r-wh o-gave-them-eng ineer ing-
degrees/

3 Puzzle

https://en.wikipedia.org/wik i/P uzzle# /med ia/F ile: A_Pu zz le.JPG

Copyright © Scott Bradner & Ben G aucherin 20154

	e45a_m07-t00-intro
	Slide 1: Distributed software Introduction
	Slide 2: Learning goals
	Slide 3: Distributed software systems
	Slide 4: Examples of distributed systems
	Slide 5: Examples of distributed systems, contd.
	Slide 6: Big data, distributed processing
	Slide 7: Big data, distributed processing, contd.
	Slide 8: Why distributed systems?
	Slide 9: Why distributed systems?
	Slide 10: Topics
	Slide 11: Topics
	Slide 12: Image credits
	Slide 13: Image credits

	e45a_m07-t01-Key terms and concepts
	Slide 1: Distributed software Key terms and concepts
	Slide 2: Client, Server, or both?
	Slide 3: Client, Server, or both?
	Slide 4: Characteristics
	Slide 5: Characteristics, contd.
	Slide 6: Challenges
	Slide 7: Challenges, contd.
	Slide 8: The 8 fallacies of distributed computing
	Slide 9: Language matters!
	Slide 10: Image credits

	e45a_m07-t02-Basic mechanics
	Slide 1: Distributed software Basic mechanics
	Slide 2: Remote Procedure Call (RPC)
	Slide 3: Remote Procedure Call (RPC), contd.
	Slide 4: Remote Procedure Call (RPC), contd.
	Slide 5: Latency of remote calls
	Slide 6: A couple of different approaches
	Slide 7: A couple of different approaches
	Slide 8: Interface Description Language (IDL)
	Slide 9: Interface Description Language (IDL)
	Slide 10: Message formats: XML
	Slide 11: Message formats: XML
	Slide 12: Message formats: XML
	Slide 13: Message formats: XML
	Slide 14: Message formats: JSON
	Slide 15: Using named resources
	Slide 16: Using named resources
	Slide 17: Using state
	Slide 18: Using state
	Slide 19: Using transactions
	Slide 20: Using transactions
	Slide 21: Transactions are ACID
	Slide 22: Image credits
	Slide 23: Image credits

	e45a_m07-t03-Evolution of architectures
	Slide 1: Distributed software Evolution of architectures
	Slide 2: In the beginning
	Slide 3: Mainframes and dumb terminals
	Slide 4: And then came the network, but…
	Slide 5: Open Software Foundation’s DCE
	Slide 6: DCE, why did it fail?
	Slide 7: Client/Server - Two-tier “fat” client
	Slide 8: Client/Server - Three-tier “fat” client
	Slide 9: A better RPC - distributed objects
	Slide 10: A better RPC - distributed objects
	Slide 11: And then came the Web
	Slide 12: Web architectures – web application
	Slide 13: Service Oriented Architecture (SOA)
	Slide 14: Service Oriented Architecture (SOA)
	Slide 15: Service Oriented Architecture (SOA)
	Slide 16: Web services/Web APIs
	Slide 17: Web services/Web APIs
	Slide 18: Web architectures – web services
	Slide 19: Web services/Web APIs
	Slide 20: Evolution of architectures
	Slide 21: Image credits

	e45a_m07-t04-Sample website
	Slide 1: Distributed software Sample website
	Slide 2: Our sample website
	Slide 3: Our sample website
	Slide 4: Load balancers
	Slide 5: Load balancers
	Slide 6: Internet application protocol servers
	Slide 7: Internet application protocol servers
	Slide 8: Indexing/search servers
	Slide 9: Indexing/search servers
	Slide 10: Application servers
	Slide 11: Application servers
	Slide 12: Database servers
	Slide 13: Database servers
	Slide 14: Relational/SQL databases
	Slide 15: New DB models emerging
	Slide 16: Integration servers
	Slide 17: Integration servers
	Slide 18: Integration servers, contd.
	Slide 19: Large scale supply chains and integration
	Slide 20: Perimeter firewalls
	Slide 21: Internal firewalls
	Slide 22: Firewalls
	Slide 23: Our sample website
	Slide 24: Image credits

	e45a_m07-t05-Conclusion
	Slide 1: Distributed software Conclusion
	Slide 2: In summary…
	Slide 3: In summary…
	Slide 4: Image credits

