
For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Simple software
Introduction

CSCI E 45a: The Cyber World – part A

1Copyright © Scott Bradner & Ben G aucherin 2015

Learning goals

• Understand the process and

tools involved in making
simple software

• Understand the

environment within which
software is run, and the key

elements of running
software

• Understand how one could

abuse software to subvert it

Copyright © Scott Bradner & Ben Gaucherin 2015 2

Topics

• Running software - R
Operating systems, and the basic
structural elements of running
software

• Making simple software - R
Introduction to programming in a
handful of slides

• The evolution of
programming languages - R
The landscape of programming
languages

Copyright © Scott Bradner & Ben G aucherin 2015 3

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Topics

• The craft of making software

- R

Going from Sunday afternoon
coder to professional software
engineer

• Unintended ways to use
software - R

What can you do if you use
software in ways the people who

made it did not expect

Copyright © Scott Bradner & Ben G aucherin 2015 4

Topics

• Artificial Intelligence - R

A new twist on algorithms, data

and programs exhibiting
“apparent intelligence”

Copyright © Scott Bradner & Ben Gaucherin 2015 5

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

3

 http://blogs.screenconnect.com/image.axd?picture=linux

-mac-windows.png

3 "1983 CPA 5426 (1)" by Unknown -
http://www.muslimheritage.com/to pics/defau lt.cfm?ArticleID=631, [1].

Licensed under Public Domain via Commons -

https://commons.wikimedia.org/w iki/Fi le:1983_ CPA_5 426_(1).png #/me dia
/File:1983_CPA_5426_(1).png

4 "Swanson Shoe Repair 18" by Joe Mabel. Licensed under CC BY-

SA 3.0 via Commons -
https://commons.wikimedia.org/w iki/Fi le:Swanson_Sh oe_Re pair _18.jpg #/

media/File:Swanson_Shoe_Repa ir_1 8.jpg

4 CIA logo

5 The official seal for the Algorithmic Warfare Cross-Functional

Team -
https://imgix.bustle.com/inverse/ 73/9e /19 /2d /a025 /42ba /a81e /735e 7ff30

d6f/the-official-seal-for-the-algor ithmic- warfare-cross-functiona l-team-
aka-project-

maven.png?w=710&h=752&fit=max&auto=format %2Ccomp ress&q= 50&d p
r=2

Copyright © Scott Bradner & Ben G aucherin 2015 6

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

5 The official seal for the Algorithmic Warfare Cross-Functional

Team -
https://imgix.bustle.com/inverse/ 73/9e /19 /2d /a025 /42ba /a81e /735e 7ff30

d6f/the-official-seal-for-the-algor ithmic- warfare-cross-functiona l-team-
aka-project-

maven.png?w=710&h=752&fit=max&auto=format %2Ccomp ress&q= 50&d p
r=2

Copyright © Scott Bradner & Ben G aucherin 2015 7

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Simple software
Running software

CSCI E 45a: The Cyber World – part A

1 Copyright © Scott Bradner & Ben G aucherin 2015

Operating systems

• Environment for running

software

• User interface

Command line, menus, Graphical
User Interface (GUI)

• Hardware drivers

Memory, storage, video, etc.

• Services

• Utilities

Copyright © Scott Bradner & Ben G aucherin 20152

Historical highlights

• IBM’s OS/360

• DEC’s TOPS 10

• Xerox Alto OS

• DEC’s VMS

• UNIX(es)

System III, BSD, System V, Solaris

• UCLA’s LOCUS

• Digital Research’s CP/M

• Microsoft’s DOS

Copyright © Scott Bradner & Ben G aucherin 20153

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Historical highlights, contd.

• IBM’s OS/2

• Original Apple Mac OS

• Microsoft’s Windows

• More UNIX(es)

NeXT’s NeXTSTEP

Linux

Apple’s Mac OS X and iOS

Google’s Android

Copyright © Scott Bradner & Ben G aucherin 20154

Operating system user interface

• Command line

Still the most flexible

• Menu

• Touch/pen

• Graphical User Interfaces

(GUIs)

• Multi-touch

• Gesture

• Brain controlled

Copyright © Scott Bradner & Ben G aucherin 20155

Operating system services

• Service - Software that runs

in the background and
performs utility functions

e.g. print spooler/manager

• Typically comes with tools to
manage the service

• Often includes a

programmatic interface to
the service, an Application

Programming Interface (API)

Copyright © Scott Bradner & Ben G aucherin 20156

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Operating system services, contd.

• Example services:

Task management, scheduler

Memory management

Device management

File system

Print

Graphics/Video, Audio

Security

Networking

Etc.

Copyright © Scott Bradner & Ben G aucherin 20157

Operating system task management

• Manages processes

Chunks of code to be run

Loading/Unloading,
Starting/Stopping

• Single task vs. Multi-task

• Multi-task: Cooperative vs.
Pre-emptive

Tragedy of the commons

Copyright © Scott Bradner & Ben G aucherin 20158

Process

• Top level chunk of self-

contained, run-able
software in “memory”

• Creating processes

Running an executable file

Operating systems primitives
(e.g. Fork, Exec in UNIX)

• Operating systems provide
facilities for processes to

“talk” to each other

Copyright © Scott Bradner & Ben G aucherin 20159

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Process, contd.

• Process hierarchy:

Process ID (PID) and their Parent

PID (PPID) - what started this
process

Starting with the “init task” of an
operating system

e.g. PID 1 on OS X is launchd

• Zombie/orphan processes

Copyright © Scott Bradner & Ben G aucherin 201510

Call stack and heap

• Call stack

As functions are called,

information about the function
call is pushed on a stack

When a function has completed,
it returns control to the caller of

the function and it gets popped
off the stack

• Heap

The memory space within which
non-stack variables are allocated

Copyright © Scott Bradner & Ben G aucherin 201511

Threads

• Concurrency within a

process

• Threads each have their
own call stack

• Threads share the process
heap

Copyright © Scott Bradner & Ben G aucherin 201512

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

The impact of resource glut

• Software developers used to

have to worry about:

Limited resources: memory,
storage, etc.

Time costly operations: disk

writes, etc.

Code optimization

• But with resource glut, we
don’t need to be as careful…

Copyright © Scott Bradner & Ben G aucherin 201513

• …or do we?

Portable/mobile devices, other

resource constrained devices
(storage, processing, battery
power, etc.)

Remember that technology

continues to change
e.g., WAP is no longer needed

The impact of resource glut, contd.

Copyright © Scott Bradner & Ben G aucherin 201514

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

2 http://blogs.screenconnect.com/image.axd?picture=linux-mac-
windows.png

3 OpenVMS, MS DOS logos

3 AT&T System V https://covers.openlibrary.org/b/id /660 4025-
M.jpg

4 OS/2, Windows, NeXT, Android, Mac OS,

4 "Tux" by lewing@isc.tamu.edu and The GIMP. Licensed under

Attribution via Wikimedia Commons -
https://commons.wikimedia.org/w iki/Fi le:Tux.png#/med ia/F ile:Tux.png

5 "Apple Unix with Netscape" by Taken by me on a Quadra 650

running A/UX 3.0.1.. Via Wikipedia -

https://en.wikipedia.org/wik i/F ile: App le_Un ix_w ith_Net scape.jpg# /med ia/
File:Apple_Unix_with_Net scape.jpg

5 "Linux command-line. Bash. GNOME Terminal. screenshot" by

ZxxZxxZ - Own work. Licensed under GPL via Commons -
https://commons.wikimedia.org/w iki/Fi le:Linux_comman d-

line._Bash._GNOME_Terminal._scree nsh ot.png# /media /Fi le:Linux_comma
nd-line._Bash._GNOME_Termina l._screen shot.p ng

Copyright © Scott Bradner & Ben G aucherin 201515

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

8 Multitasking https://flic.kr/p/7MuTo7

11 "Call stack layout" by R. S. Shaw (R. S. Shaw) - Own work.

Licensed under Public Domain via Commons -
https://commons.wikimedia.org/w iki/Fi le:Cal l_stack_layo ut.svg#/me dia/F il

e:Call_stack_layout.svg

12 "Spool of white thread" by No machine readable author
provided. Dmeranda assumed (based on copyright claims). - No machine

readable source provided. Own work assumed (based on copyright claims)..

Licensed under CC BY-SA 3.0 via Commons -
https://commons.wikimedia.org/w iki/Fi le:Spoo l_of_ white_threa d.jpg# /me

dia/File:Spool_of_white_t hread.jpg

Copyright © Scott Bradner & Ben G aucherin 201516

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Simple software
Making simple software

CSCI E 45a: The Cyber World – part A

1 Copyright © Scott Bradner & Ben G aucherin 2015

Copyright © Scott Bradner & Ben G aucherin 20152

Simple software

• Self-contained application/utility

• Single executable file or script

• Single process

Copyright © Scott Bradner & Ben G aucherin 20153

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Copyright © Scott Bradner & Ben G aucherin 20144

Programming languages

• A simplified taxonomy:

Compiled languages

Functional languages

Object oriented languages

Visual programming languages

Interpreted languages/scripts

Functional languages

Object oriented languages

Copyright © Scott Bradner & Ben G aucherin 20155

Making software
The compiled languages version

• Write source code using a

programming language

• Compile to object code

• Link into a binary executable

• Run binary executable

Examples:

Assembly language, C, C++,
Pascal, Java*, C#*

Copyright © Scott Bradner & Ben G aucherin 20156

* Compiles to an intermediate language,

NOT object code

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Compilation

• Translating from one

language into another

Specifically, takes source code
and turns it into object code (or
intermediate language)

Lexical, syntactic, and semantic
analyses

• Rooted in linguistics work

Syntactic Structures

Noam Chomsky (1956)

Principles of compiler design

Aho/Ullman (1977)

Copyright © Scott Bradner & Ben G aucherin 20157

Libraries

• Packages of objects or

functions to be used by
developers

• Two primary types of

libraries

Static libraries – content of the
library is included in the
resulting executable

Dynamic libraries – the
executable is given a reference
to an outside library that is
loaded at runtime

Copyright © Scott Bradner & Ben G aucherin 20158

Linking

• Linking does two things:

“Glues” together individual
chunks of object code

Some of the “chunks” can
be static libraries or
references to dynamic
libraries

Sets up startup code for the
operating system

Copyright © Scott Bradner & Ben G aucherin 20159

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

The finished product

Copyright © Scott Bradner & Ben G aucherin 201510

Making software
The interpreted languages version

• Write source code/script

• An interpreter is used to
interpret/run the script

Examples:

Shell script, Perl, PHP, Ruby,
Python, JavaScript

“Slower” because of
interpretation

Can be run in “interactive mode”

Copyright © Scott Bradner & Ben G aucherin 201511

An important scripting language - BASIC

• Beginner's All-purpose
Symbolic Instruction Code
BASIC

Making programming
accessible to everyone

• 1964 Dartmouth College
Kemeny/Kurtz
Enable students (not just in math
or science curriculums) to use
computers

• Microsoft’s initial focus

Copyright © Scott Bradner & Ben G aucherin 201512

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Runtimes, interpreters

• Abstracting the OS

making the differences between

OS’es invisible to the running
code

• Portable code – write once,

run many

• Runtime engine (or player)
runs an intermediate

language

e.g., JVM for Java, CLR for .NET,
Flash player for Adobe Flash

Copyright © Scott Bradner & Ben G aucherin 201513

Core syntactic elements

• Variables

scalar and structures
i=5, j={name: Bob,

id:1234}

Variables can be typed: strings,
numbers, date/time

• Operators

General and type specific
str3 = strcat(str1, str2)

now()

Copyright © Scott Bradner & Ben G aucherin 201514

Core syntactic elements

• Logic operators

& , |, ==, !, <, >, etc.

• Flow control

if…then, for loops, while loops,
etc.

• Error handling

try/throw/catch

• Input/Output (I/O)

print, read, etc.

Copyright © Scott Bradner & Ben G aucherin 201515

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Core syntactic elements

• Functions/procedures/subro

utines – encapsulating
functionality that can be

called from other parts of
the source code

Functions can return values

Functions can take parameters

Int function

add_two_numbers (int a,

int b)

Copyright © Scott Bradner & Ben G aucherin 201516

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

2 Tree swing

http://www.businessba lls.com/image s/tre eswing /tree- swing-s- hogh.jpg

3 Bill Amend FoxTrot http://mattdturner.com/wordpre ss /wp-
content/uploads/2011/04 /pu nit ion is8. jpg

4 http://www.ollydbg.de/Pics/m ult ilog.gif

7 "Green Dragon Book (front)" by Source (WP:NFCC#4). Licensed

under Fair use via Wikipedia -

https://en.wikipedia.org/wik i/F ile:Green _Dragon_ Book_(fr ont).jpg# /med ia
/File:Green_Dragon_Book_(front).jpg

12 "Altair Basic Sign" by Swtpc6800 en:User:Swtpc6800 Michael

Holley - Swtpc6800 en:User:Swtpc6800 Michael Holley. Licensed under
Public Domain via Commons -

https://commons.wikimedia.org/w iki/Fi le:Alta ir_ Bas ic_Sign.jpg#/me dia/F il
e:Altair_Basic_Sign.jpg

Copyright © Scott Bradner & Ben G aucherin 201517

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Simple software
The evolution of programming languages

CSCI E 45a: The Cyber World – part A

1 Copyright © Scott Bradner & Ben G aucherin 2015

Functional programming languages

• Focused on describing the

flow of processing

• Allows the implementation
of Algorithms

al-Khwārizmī c. 780 to c. 850

Recipe for solving a given
problem

Helps assess the complexity of a
process - time to process the data
in relation to the size of data being
processed

Copyright © Scott Bradner & Ben G aucherin 20152

Example – Simple C program

include <stdio.h>

int main(void)

{

 int count;

 for (count=1; count<=500; count++)

 printf("I will not throw paper

airplanes in class.\n");

 return 0;

}

Copyright © Scott Bradner & Ben G aucherin 20143

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Object Oriented Design/Languages

• Bringing programming

languages closer to
“real-world” things

Alan Kay’s early history of
Smalltalk

Marvin Minsky’s Frames

Artificial Intelligence and
knowledge representation

Copyright © Scott Bradner & Ben G aucherin 20154

Alan Kay

Marvin Minsky

Object Oriented Design/Languages, contd.

• Classes are models for

objects

• Objects are instances of
classes

• Two parts to an object:

Attributes - data

Methods – code for object
behavior

Copyright © Scott Bradner & Ben G aucherin 20155

Example – Java

Copyright © Scott Bradner & Ben G aucherin 20146

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Object Orientation – the good stuff

• Encapsulation

You can only see the interface of

an object

Its “innards” are not visible
e.g., in the Person class the

calculation to get someone’s age is
embedded in the object – anyone

using this object does not know
how the calculation is performed,
or whether the age is stored or

calculated

Copyright © Scott Bradner & Ben G aucherin 20157

Object Orientation – the good stuff, contd.

• Inheritance

Allows a class to take on the
shared characteristics of
another class (parent class),
and to modify/add to them

e.g., if we had a base Shape class
that captures basic behaviors of
geometric figures; we could have
the following classes inherit from
this parent class: Square,
Circle, Triangle

Copyright © Scott Bradner & Ben G aucherin 20158

Object Orientation – the good stuff, contd.

• Polymorphism

The ability for code to act on
objects of multiple types

e.g., If our Shape class had a
color attribute and a method

set_color(a_color) to
change the color of a shape - we
could call set_color on

Squares, Circles, and
Triangles

Copyright © Scott Bradner & Ben G aucherin 20159

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Object design patterns

• General, reusable solutions
to common problems
E.g.: façade, delegation, factory,
singleton, etc.

• Model View Controller
Model – the core
domain/business logic

View – the visualization of the
Model

Controller – routes requests to
View/Model

Copyright © Scott Bradner & Ben G aucherin 201510

Visual/Event based programming

• Build a graphical user

interface

• Associate actions to events

e.g. button1_click(){ <do
something> }

• Event loop runs constantly
to handle events as they

come up

Events queue up in an “event
queue”

Copyright © Scott Bradner & Ben G aucherin 201511

HyperCard/HyperTalk

• Started by Bill Atkinson in

1985

• HyperTalk added by
Dan Winkler in 1986

• Released by Apple as free
software on Mac OS in 1987

• Programming for the people

Easy visual interface design

English-like scripting

Copyright © Scott Bradner & Ben G aucherin 201512

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Microsoft Visual Basic

• Initially created by Alan

Cooper and his team at
Tripod

• First released at COMDEX

May 1991

• Visual programming in
Windows (and DOS)

• First enterprise grade visual
programming language

Copyright © Scott Bradner & Ben G aucherin 201513

Scripting the Web

• Server side scripting:
Perl, PHP, Python, Ruby,
JavaScript

• Server side frameworks*:
Ruby on Rails (RoR), Django, lots
of PHP MVC frameworks

• Client side scripting:
JavaScript

• Client side frameworks*:
JQuery, Dojo, etc.

Copyright © Scott Bradner & Ben G aucherin 201514

* Framework: collection of code, tools, designs to serve as
foundation for building more complex structures

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

2 "1983 CPA 5426 (1)" by Unknown -

http://www.muslimheritage.com/to pics/defau lt.cfm?ArticleID=631, [1].
Licensed under Public Domain via Commons -

https://commons.wikimedia.org/w iki/Fi le:1983_ CPA_5 426_(1).png #/me dia
/File:1983_CPA_5426_(1).png

4 "Alan Kay (3097597186)" by Marcin Wichary from San Francisco,

U.S.A. - Alan Kay. Licensed under CC BY 2.0 via Commons -
https://commons.wikimedia.org/w iki/Fi le:Ala n_Kay_(30 97597 186).jpg# /m

edia/File:Alan_Kay_(309759718 6).jpg

4 "Marvin Minsky at OLPCb" by Original uploader was

Sethwoodworth at en.wikipedia, taken by Bcjordan - Transferred from
en.wikipedia; transferred to Commons by User:Mardetanha using

CommonsHelper.. Licensed under CC BY 3.0 via Commons -
https://commons.wikimedia.org/w iki/Fi le:Marvin_M insky_at _OLPCb.jpg#/

media/File:Marvin_Minsky_at_OLP Cb.jpg

10 Gang of four http://qph.is.quoracdn.net/main- qimg-

04ce4370594c6870fb7d26681676dd3 5?convert_to _web p=tru e

Copyright © Scott Bradner & Ben G aucherin 201515

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

10 "Design Patterns cover" by Source. Licensed under Fair use via

Wikipedia -
https://en.wikipedia.org/wik i/F ile:Des ign_Patte rns_cover.jpg# /med ia/F ile:

Design_Patterns_cover.jpg

12 Hypercard icon

13 VisualBasic logo

Copyright © Scott Bradner & Ben G aucherin 201516

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Simple software
The craft of making software

CSCI E 45a: The Cyber World – part A

1 Copyright © Scott Bradner & Ben G aucherin 2015

The craft of making software

• Also referred to as Software

Engineering

• What goes into making good
software besides coding

• Not as commonly
understood or adhered to as
one would think (or hope)

Copyright © Scott Bradner & Ben G aucherin 20152

The craft – Analytical and system thinking

• A way of systematic analysis

that asks, “How can I break
this problem down into its

constituent parts?”

• And conversely, the ability
to understand how

individual parts come
together into a coherent

whole

Copyright © Scott Bradner & Ben G aucherin 20153

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

The craft – Software Development Life
Cycle

• SDLC - Overall process for

developing software

• Old school – “waterfall”

Fully design, then fully develop,
then fully test, then deploy

• New school – Agile

Inspired from lean principles

Develop deployable software

in small (e.g. 2 weeks) iterations

Copyright © Scott Bradner & Ben G aucherin 20154

The craft – SDLC, contd.

• Why waterfall?
Fully understand the scope and
every detail before you start
coding

Thus, think you understand the
level of effort, timeframe, and
budget needed to deliver the
solution

Testing is a focused quality effort
to finish up the project

Copyright © Scott Bradner & Ben G aucherin 20155

The craft – SDLC, contd.

• Problems with waterfall

The business’ needs (or

understanding of its needs) may
have changed by the time the
design or development is done

A large percentage of the

functionality you design may be
theoretically, but not actually,
useful

Long wait time before you get

anything useful

Copyright © Scott Bradner & Ben G aucherin 20156

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

The craft – SDLC, contd.

• Problems with waterfall

Long phases means the

magnitude (and odds) of slippage
are high

By making “testing” a separate
phase it allows for quality and

design issues to go
undetected/un-addressed for
long periods of time, and be very
disruptive when found

And many more…

Copyright © Scott Bradner & Ben G aucherin 20157

The craft – SDLC, contd.

• Why Lean/Agile?
Reduce “waste”

Deliver value quickly and
frequently

“Fail fast and often”

• Not a perfect model either,
but a marked improvement
over waterfall

Copyright © Scott Bradner & Ben G aucherin 20158

The craft - Architecture

• For simple and complex
software

• Defining and implementing
the optimal design for the
software needed
Right mix of technologies

Logical structure

Physical structure

Connection points and
dependencies with the rest of
the environment

Copyright © Scott Bradner & Ben G aucherin 20159

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

The craft – Source code control

• Keep track of the changes

made to the source code

Allow multiple developers to
work together on the same code
base

• And why they were made
(so you can revert back,

or audit the code)

Copyright © Scott Bradner & Ben G aucherin 201510

The craft - Versioning

• Important to compare to
similar pieces of software
and know which one is
newer than the other

• Most versioning system use:

<major>.<minor>.<more>

e.g. 01.23.2014101701

• Minor releases are also
referred to as point releases

Copyright © Scott Bradner & Ben G aucherin 201511

The craft – Coding standards

• Making the code

legible/maintainable for
others (and for you)

Naming rules, indentation rules,
source code file structure

Source file headers, comments,
etc.

Embedded documentation

• Helped/enforced by code

reviews and compliance
tools

Copyright © Scott Bradner & Ben G aucherin 201512

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

The craft – Quality Assurance

• Knowing what it means to

meet or exceed
expectations

Test Driven Development

• Many sub-categories of
testing to ensure quality

Unit testing

Integration testing

Performance and scalability
testing

Regression testing

Copyright © Scott Bradner & Ben G aucherin 201513

The craft – Build & Release

• Build - Process for

producing the finished
product

• Release - And moving it

through different
environments

e.g., Dev, Test, Stage,

Production

• Moving increasingly to

automated, continuous
build and release

Copyright © Scott Bradner & Ben G aucherin 201514

The craft – DevOps

• Looking past the “silicon

snake oil”

Making the bridge between
development and operations
better, and more efficient

Using Agile, automation and
programmable infrastructures

SDN, Cloud IaaS, etc.

• Many new tools
emerging
Puppet, Ansible, Chef, etc.

Copyright © Scott Bradner & Ben G aucherin 201515

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

The craft – DevOps

• Infrastructure as code v.

Infrastructure as kittens

• Containerization

Packaging and promoting
running software in smaller
packages than a whole machine

• Dev Ops challenges

Different mindsets on either side
of the conversation

Separation of duty requirements
can make this harder

Copyright © Scott Bradner & Ben G aucherin 201516

#incl ude <m ath. h>

#incl ude <sys /tim e.h >

#incl ude <X11 /Xli b.h >

#incl ude < X11/ keys ym. h>

 d oubl e L ,o ,P

 ,_ =dt, T,Z, D=1 ,d,

 s[999] ,E,h = 8 ,I,

 J, K,w[999] ,M, m,O

 ,n[999] ,j=3 3e- 3,i=

 1E3 ,r,t , u, v , W,S=

 74. 5,l= 221, X=7 .26,

 a,B ,A=3 2.2, c, F,H;

 int N,q , C, y, p,U;

 Wind ow z ; ch ar f[52]

 ; G C k; mai n(){ Di spla y*e=

 XOpe nDis play (0) ; z =Roo tWin dow(e,0); f or (XSet Fore gro und(e,k= XCre ateG C (e,z, 0,0) ,Bla ckPi xel (e,0))

; sca nf(" %lf% lf%l f", y +n ,w+y , y+ s)+ 1; y ++) ; XS elec tIn put(e,z= XCr eate Sim pleW indo w(e, z,0, 0,4 00,4 00,

0,0,W hite Pixe l(e, 0)),Ke yPre ssMa sk) ; fo r(XM apWi ndow (e, z); ; T= sin(O)){ st ruct tim eval G={ 0, dt*1 e6}

; K= cos(j); N=1e 4; M+= H*_; Z=D *K; F+= _*P; r=E *K; W=c os(O); m=K* W; H =K* T; O +=D* _*F/ K+d /K* E*_; B=

sin(j); a =B*T *D-E *W; XCl earW indo w(e ,z); t=T *E+ D*B* W; j+=d *_*D -_*F *E; P=W *E*B -T*D ; fo r (o +=(I=D* W+E

*T*B, E*d/ K *B +v+B /K* F*D) *_; p<y;){ T=p [s]+ i; E =c-p [w] ; D= n[p] -L; K=D* m-B *T-H *E; if(p [n] +w[p]+ p[s

]== 0 |K < fabs (W=T *r- I*E +D*P) |f abs (D=t *D+ Z *T -a * E)> K)N =1e4 ; el se{ q=W /K * 4E2+ 2e2; C= 2E2 +4e2 / K

 D; N-1E 4&& XDra wLi ne(e ,z, k,N ,U, q,C) ; N= q; U =C; } + +p; } L+ =_ (X*t +P *M+m *l); T=X *X+ l*l +M * M;

 XDr awSt ring (e,z ,k ,20, 380, f,17); D=v/ l*15 ; i+ =(B *l- M*r -X*Z)*_; for (; XPen ding (e); u * =CS !=N) {

 XEve nt z ; XN extE ven t(e ,&z) ;

 ++*((N=X Look upK eysy m

 (& z.xk ey,0))- IT?

 N- LT? UP-N ?& E:&

 J: & u: &h) ; - -*(

 DN -N? N-D T ? N==

 RT ?&u: & W :&h :&J

) ; } m=15 *F/ l;

 c +=(I =M/ l,l *H

 + I*M+ a*X) *_; H

 = A*r+ v*X- F*l +(

 E =.1+ X*4. 9/l ,t

 = T*m/ 32-I *T/ 24

)/S; K=F *M+ (

 h* 1 e4/l -(T +

 E*5* T*E) /3e 2

)/S- X*d- B*A ;

 a=2. 63 / l*d ;

 X+=(d*l -T/ S

 *(. 19*E +a

 *.6 4+J/ 1e3

)-M * v +A*

 Z)* _; l +=

 K * _; W =d;

 spr intf (f,

 "%5 d % 3d"

 "%7 d",p =l

 /1.7 ,(C= 9E3 +

 O* 57. 3)%0 550, (int)i); d+ =T*(.45- 14/l *

 X-a *13 0-J* .14)*_/ 125e 2+F *_*v ; P= (T*(47

 I- m 52+E *94 *D-t *.38 +u* .21* E) / 1e2+ W*

 179 *v) /231 2; s elec t(p= 0,0 ,0,0 ,&G) ; v- =(

 W* F-T *(.6 3*m- I*.0 86+m *E* 19-D *25- .11* u

) /10 7e2) *_; D=co s(o) ; E =sin (o); } }

Copyright © Scott Bradner & Ben G aucherin 2014
17

Coding science and art
Flight Simulator

Winner of the 1998 IOCCC
http://blog.aerojockey.com/post/iocccsim

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

2 "Swanson Shoe Repair 18" by Joe Mabel. Licensed under CC BY-

SA 3.0 via Commons -
https://commons.wikimedia.org/w iki/Fi le:Swanson_Sh oe_Re pair _18.jpg #/

media/File:Swanson_Shoe_Repa ir_1 8.jpg

4 http://popdigital.ca/wp-content/ uploads/20 13/0 3/tr iang les.png

10
 http://photos3.meetupstatic.com/phot os/eve nt/9 /3/ 6/7 /600_ 4

32877735.jpeg

14 Jenkins, CruiseControl logos

Copyright © Scott Bradner & Ben G aucherin 201518

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Simple software
Unintended ways to use software

CSCI E 45a: The Cyber World – part A

1 Copyright © Scott Bradner & Ben G aucherin 2015

Compromising software

• Find bugs in the software
Bugs with “useful” negative side-
effects – Zero Days

e.g., the Shellshock Bash bug

Fuzzing: testing by providing
random, un-expected, invalid
input
“The (security) risk in using a
programming language is directly
proportional to the expressiveness of
the language”

Dan Geer: HKS IGA 236M talk 01/13

Copyright © Scott Bradner & Ben G aucherin 20152

Compromising software, contd.

• Patching executables
Inserting nefarious code

Bypassing protection
mechanisms

• Using binders/joiners to
“bundle” good and bad

executables

• Patching dynamic libraries
to change behavior

Rootkits - modify operating

systems libraries and executables

Copyright © Scott Bradner & Ben G aucherin 20153

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Compromising software, contd.

• Compromising the tools

e.g., compromised versions

of compilers can
surreptitiously introduce
un-expected code

Copyright © Scott Bradner & Ben G aucherin 20154

Ken Thompson

Buffer overflow

• Buffer* overflow – occurs

when more data than a
buffer can hold is written to

the buffer

The excess data overwrites other
data in memory, leading to un-
expected (or expected) results

This has been a popular means of
inserting/injecting nefarious
code into a running process

Copyright © Scott Bradner & Ben G aucherin 20155

* Buffer: a small area of memory used for temporary storage of data.

Usually used in reading/writing to/from keyboard, disk, network, etc.

Disassembling/Reversing

• Reversing: contraction of

Reverse Engineering

Crackme: software built to
practice reversing skills

• Disassembling: translate
object code into assembly

code

• Prohibited by many End
User License Agreement

(EULA)

Copyright © Scott Bradner & Ben G aucherin 20156

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Preventing /detecting compromise

• Keep cryptographic hash of
files
Files - executables, libraries,
scripts, etc.

• Code signing
Software publisher – Creates
digital signature of the
executable

Software user – Checks that the
digital signatures is valid

Copyright © Scott Bradner & Ben G aucherin 20157

Beyond tech – ethics and software making

• There’s more to software
making than the technical
aspect of it

• What would you do if you
were asked to build
technology that…
Serves a purpose that goes
against your personal beliefs

Could be used (today or in the
future) as a tool for oppression
and control

• Engineers are starting to
revolt

Copyright © Scott Bradner & Ben G aucherin 20158

Timnit Gebru

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

2 "H96566k" by Courtesy of the Naval Surface Warfare Center, Dahlgren,
VA., 1988. - U.S. Naval Historical Center Online Library Photograph NH 96566 -

KN. Licensed under Public Domain via Wikimedia Commons -
https://commons.wikimedia.org/wiki/File:H96566k.jpg#/media/File:H96566k.jp
g

3 "Cheval de Troie d'après le Virgile du Vatican" by after the Vergilius Vaticanus -
Internet Archive. Licensed under Public Domain via Wikimedia Commons -

https://commons.wikimedia.org/wiki/Fi le:Cheval_ de_Troie_d% 27apr %C3% A8 s_le_ Virg ile
_du_Vatican.jpg#/media/File:Cheval_de_Troie_ d%27a pr% C3% A8s_le_ Virg ile_d u_Vatican.j
pg

3 SONY logo

4 "Ken n dennis" by Unknown -

http://www.catb.org/~esr/jargon/html/U/Un ix.html. Licensed under Public Domain via
Wikimedia Commons -

https://commons.wikimedia.org/wiki/Fi le:Ken_ n_den nis.jpg#/med ia/Fi le:Ken_n _denn is. jp
g

4 CIA, and Apple Xcode logos

5 “I don’t always overflow buffers” http://www.quickmeme.com/meme/55qb

Copyright © Scott Bradner & Ben G aucherin 20159

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

6 crackmes.de logo

7 Screenshot by Ben Gaucherin

8 The official seal for the Algorithmic Warfare Cross-Functional Team -

https://imgix.bustle.com/inverse/ 73/9e /19 /2d /a025 /42ba /a81e /735e 7ff30d6f /the-
official-seal-for-the-algorithmic-warfare-cro ss-f unctio nal-team-aka-pr oject-

maven.png?w=710&h=752&fit=max&auto=format %2Ccomp ress&q= 50&d pr=2

8 Timnit Gebru -

https://upload.wikimedia.org /w ikipe dia/comm on s/th umb/ 6/6 d/T imnit_Gebr u_crop.jpg/
440px-Timnit_Gebru_crop.jpg

Copyright © Scott Bradner & Ben G aucherin 201510

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Simple software
Conclusion

CSCI E 45a: The Cyber World – part A

1 Copyright © Scott Bradner & Ben G aucherin 2015

Some key points

• Software making has

evolved greatly:

To be more accessible to the
masses

To promote reuse

To support a broader set of
technologies, with a smaller set
of tools

To involve more sophisticated
practices to yield better value
and quality

Copyright © Scott Bradner & Ben G aucherin 20152

Some key points, contd.

• Security is a problem

There are limited ways for

software to be made secure (in
the long run)

Many ways to abuse it

There is no “provable” way to
eliminate all bugs

• No one knows if and how
much you can trust the
“code bits” you run

Copyright © Scott Bradner & Ben G aucherin 20153

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

Some key points, contd.

• Everyone should learn to

code

The 3 R’s and the C: reading,
writing, arithmetic, and coding

Copyright © Scott Bradner & Ben G aucherin 20154

Image credits

All drawings and photos by Ben Gaucherin unless noted

Slide# credit

3 "Cheval de Troie d'après le Virgile du Vatican" by after the
Vergilius Vaticanus - Internet Archive. Licensed under Public Domain via

Wikimedia Commons -
https://commons.wikimedia.org/wiki/Fi le:Cheval_ de_Troie_d% 27apr %C3% A

8s_le_Virgile_du_Vatican.jpg#/med ia/Fi le:Cheval_de_Troie_d% 27apr %C3 %A
8s_le_Virgile_du_Vatican.jpg

4 CS50 fair fair.cs50.net

Copyright © Scott Bradner & Ben G aucherin 20155

	e45a_m05-t00-intro
	Slide 1: Simple software Introduction
	Slide 2: Learning goals
	Slide 3: Topics
	Slide 4: Topics
	Slide 5: Topics
	Slide 6: Image credits
	Slide 7: Image credits

	e45a_m05-t01-Running software
	Slide 1: Simple software Running software
	Slide 2: Operating systems
	Slide 3: Historical highlights
	Slide 4: Historical highlights, contd.
	Slide 5: Operating system user interface
	Slide 6: Operating system services
	Slide 7: Operating system services, contd.
	Slide 8: Operating system task management
	Slide 9: Process
	Slide 10: Process, contd.
	Slide 11: Call stack and heap
	Slide 12: Threads
	Slide 13: The impact of resource glut
	Slide 14: The impact of resource glut, contd.
	Slide 15: Image credits
	Slide 16: Image credits

	e45a_m05-t02-Making simple software
	Slide 1: Simple software Making simple software
	Slide 2
	Slide 3: Simple software
	Slide 4
	Slide 5: Programming languages
	Slide 6: Making software The compiled languages version
	Slide 7: Compilation
	Slide 8: Libraries
	Slide 9: Linking
	Slide 10: The finished product
	Slide 11: Making software The interpreted languages version
	Slide 12: An important scripting language - BASIC
	Slide 13: Runtimes, interpreters
	Slide 14: Core syntactic elements
	Slide 15: Core syntactic elements
	Slide 16: Core syntactic elements
	Slide 17: Image credits

	e45a_m05-t03-The evolution of programming languages
	Slide 1: Simple software The evolution of programming languages
	Slide 2: Functional programming languages
	Slide 3: Example – Simple C program
	Slide 4: Object Oriented Design/Languages
	Slide 5: Object Oriented Design/Languages, contd.
	Slide 6: Example – Java
	Slide 7: Object Orientation – the good stuff
	Slide 8: Object Orientation – the good stuff, contd.
	Slide 9: Object Orientation – the good stuff, contd.
	Slide 10: Object design patterns
	Slide 11: Visual/Event based programming
	Slide 12: HyperCard/HyperTalk
	Slide 13: Microsoft Visual Basic
	Slide 14: Scripting the Web
	Slide 15: Image credits
	Slide 16: Image credits

	e45a_m05-t04-The craft of making software
	Slide 1: Simple software The craft of making software
	Slide 2: The craft of making software
	Slide 3: The craft – Analytical and system thinking
	Slide 4: The craft – Software Development Life Cycle
	Slide 5: The craft – SDLC, contd.
	Slide 6: The craft – SDLC, contd.
	Slide 7: The craft – SDLC, contd.
	Slide 8: The craft – SDLC, contd.
	Slide 9: The craft - Architecture
	Slide 10: The craft – Source code control
	Slide 11: The craft - Versioning
	Slide 12: The craft – Coding standards
	Slide 13: The craft – Quality Assurance
	Slide 14: The craft – Build & Release
	Slide 15: The craft – DevOps
	Slide 16: The craft – DevOps
	Slide 17
	Slide 18: Image credits

	e45a_m05-t05-Unintended ways to use software
	Slide 1: Simple software Unintended ways to use software
	Slide 2: Compromising software
	Slide 3: Compromising software, contd.
	Slide 4: Compromising software, contd.
	Slide 5: Buffer overflow
	Slide 6: Disassembling/Reversing
	Slide 7: Preventing /detecting compromise
	Slide 8: Beyond tech – ethics and software making
	Slide 9: Image credits
	Slide 10: Image credits

	e45a_m05-t06-Conclusion
	Slide 1: Simple software Conclusion
	Slide 2: Some key points
	Slide 3: Some key points, contd.
	Slide 4: Some key points, contd.
	Slide 5: Image credits

